
An aircraft executes a horizontal loop with a speed of $150\,m{s^{ - 1}}$ with its wings banked at an angle of ${12^o}$. The radius of the loop is (\[g = 10\,m{s^{ - 2}},tan{12^o} = 0.21\])
A. $10.7\,km$
B. $9.6\,km$
C. $7.4\,km$
D. $5.8\,km$
Answer
196.2k+ views
Hint:In order to solve this question, we will use the general relation between banking angle, velocity and radius of the circular path for a body to turn safely and using this we will solve for the radius of the loop and then we will determine the correct option.
Formula used:
If $\theta $ is the angle required for a body to turn safely in the circular path of radius r and if v is the velocity of the body then the relation between banking angle, radius and velocity is,
$\tan \theta = \dfrac{{{v^2}}}{{rg}}$
where g is the acceleration due to gravity and tan is the tangent of the angle $\theta $
Complete step by step solution:
According to the question, we have given that the velocity of the aircraft is $v = 150\,m{s^{ - 1}}$ and it has a banking angle of $\theta = {12^o}$ and let r is the radius of the loop for the aircraft and we have given that \[g = 10\,m{s^{ - 2}},tan{12^o} = 0.21\].
So, using the relation $\tan \theta = \dfrac{{{v^2}}}{{rg}}$ and solving for r we get,
$\tan {12^o} = \dfrac{{{{(150)}^2}}}{{r(10)}} \\
\Rightarrow r = 10.7 \times {10^3}m \\
\therefore r = 10.7\,km $
So, the radius of the circular loop for the aircraft is $10.7\,km$.
Hence, the correct answer is option A.
Note: It should be remembered that, the basic unit of conversion used are $1\,km = 1000\,m$ and here acceleration due to gravity is given to us $g = 10\,m{s^{ - 2}}$ but when the value is not given in such a problem always used the accepted value of acceleration due to gravity which is $g = 9.8\,m{s^{ - 2}}$.
Formula used:
If $\theta $ is the angle required for a body to turn safely in the circular path of radius r and if v is the velocity of the body then the relation between banking angle, radius and velocity is,
$\tan \theta = \dfrac{{{v^2}}}{{rg}}$
where g is the acceleration due to gravity and tan is the tangent of the angle $\theta $
Complete step by step solution:
According to the question, we have given that the velocity of the aircraft is $v = 150\,m{s^{ - 1}}$ and it has a banking angle of $\theta = {12^o}$ and let r is the radius of the loop for the aircraft and we have given that \[g = 10\,m{s^{ - 2}},tan{12^o} = 0.21\].
So, using the relation $\tan \theta = \dfrac{{{v^2}}}{{rg}}$ and solving for r we get,
$\tan {12^o} = \dfrac{{{{(150)}^2}}}{{r(10)}} \\
\Rightarrow r = 10.7 \times {10^3}m \\
\therefore r = 10.7\,km $
So, the radius of the circular loop for the aircraft is $10.7\,km$.
Hence, the correct answer is option A.
Note: It should be remembered that, the basic unit of conversion used are $1\,km = 1000\,m$ and here acceleration due to gravity is given to us $g = 10\,m{s^{ - 2}}$ but when the value is not given in such a problem always used the accepted value of acceleration due to gravity which is $g = 9.8\,m{s^{ - 2}}$.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26
