Answer
Verified
87k+ views
Hint: Here a current carrying wire or conductor when placed in a magnetic field experiences a force. If the direction of the magnetic field and the direction of the wire or conductor are in 90 degrees with each other then the force that will be acting on the conductor would be perpendicular to both the magnetic field and the current carrying conductor. It can be determined using Fleming’s Left Hand Rule. Here apply the formula $F = BiL\sin \theta $; where F = Force; B = Magnetic Field Induction; i = current; L = Length of the conductor.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Complete step by step solution:
Put the known value in the formula and find B.
$F = BiL\sin \theta $
Take B to LHS and put rest of the variables in RHS
$\Rightarrow$ $\dfrac{F}{{iL\sin \theta }} = B$;
Put the given value in the above equation and solve,
$\Rightarrow$ $\dfrac{8}{{40 \times 0.2 \times \sin 90}} = B$; ….(Here $L = 20cm = 0.2m$)
Do the necessary mathematical calculation and solve for “B”.
$\Rightarrow$ $B = \dfrac{8}{8}$
The final value of B is:
$\Rightarrow$ $B = 1$ $Tesla$
The magnetic field induction is $B = 1$ $Tesla$.
Note: Here make sure to apply the correct formula for force on current carrying wire placed in a magnetic field. Do not use the formula $F = qvb\sin \theta $. Here we have been given the value of length of the wire and current in the wire. We need to use a formula ($F = BiL\sin \theta $) that relates all the given variables together.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main