
Aluminium atom has ground state electronic configuration as:
A.\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^1}\]
B.\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^1}\]
C.\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}\]
D.\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}3{{\text{p}}^{12}}\]
E.\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}3{{\text{p}}^{12}}4{{\text{p}}^6}\]
Answer
214.2k+ views
Hint: we must have the knowledge of writing electronic configuration for the element following the required law for filling of electrons in an orbital. Electrons are filled in a particular order in a defined set of orbits.
Complete step by step solution:
Electronic configuration is defined when electrons are classified in atomic orbitals. It is useful for determining the valency of the element and helps in predicting the properties along a group and period. There are different shells present in an atom. Within the shell there are various subshells and in subshell different orbitals are present within which electrons are filled.
The order of filling of electrons following Aufbau principle as follow:
\[1{\text{s }}2{\text{s }}2{\text{p }}3{\text{s }}3{\text{p 4s 3d 4p}}...\]
Pauli Exclusion Principle says that a maximum of two electrons can be filled in a particular orbital that too with opposite spins.
s subshell has one orbital so it can have a maximum of 2 electrons. p subshell has 3 orbital and can have a maximum of 6 electrons and d subshell, hence 5 electrons and can accommodate a maximum of 10 electrons.
Aluminium has an atomic number of 13. So we will fill these electrons in keeping in mind the above property and hence the electronic configuration will be:
\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}\]. We will calculate the total number of electrons\[2 + 2 + 6 + 2 + 1 = 13\].
Hence, the electronic configuration of aluminium is \[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}\] and the correct option is C.
Note: As we see the last electron of aluminium goes to the p subshell and hence it is a p block element. The group number of aluminium is 13 and the period number is 3. It is a trivalent species and donated 2 electrons to form tripositive ions and hence is metallic in nature.
Complete step by step solution:
Electronic configuration is defined when electrons are classified in atomic orbitals. It is useful for determining the valency of the element and helps in predicting the properties along a group and period. There are different shells present in an atom. Within the shell there are various subshells and in subshell different orbitals are present within which electrons are filled.
The order of filling of electrons following Aufbau principle as follow:
\[1{\text{s }}2{\text{s }}2{\text{p }}3{\text{s }}3{\text{p 4s 3d 4p}}...\]
Pauli Exclusion Principle says that a maximum of two electrons can be filled in a particular orbital that too with opposite spins.
s subshell has one orbital so it can have a maximum of 2 electrons. p subshell has 3 orbital and can have a maximum of 6 electrons and d subshell, hence 5 electrons and can accommodate a maximum of 10 electrons.
Aluminium has an atomic number of 13. So we will fill these electrons in keeping in mind the above property and hence the electronic configuration will be:
\[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}\]. We will calculate the total number of electrons\[2 + 2 + 6 + 2 + 1 = 13\].
Hence, the electronic configuration of aluminium is \[1{{\text{s}}^2}2{{\text{s}}^2}2{{\text{p}}^6}3{{\text{s}}^2}3{{\text{p}}^1}\] and the correct option is C.
Note: As we see the last electron of aluminium goes to the p subshell and hence it is a p block element. The group number of aluminium is 13 and the period number is 3. It is a trivalent species and donated 2 electrons to form tripositive ions and hence is metallic in nature.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

