
All possible two factor’s products are formed from numbers \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\]. Find the number of factors out of the total obtained factors which are multiples of 5.
A. \[5040\]
B. \[7180\]
C. \[8150\]
D. None of these
Answer
164.4k+ views
Hint: First, calculate the total number of two factor products. Then, find the number of numbers which are not multiples of 5 from 1 to \[200\]. After that, calculate the total number of two factor products which are not multiple of 5. In the end, subtract the total number of two factor products which are not multiple of 5 from the total number of two factor products and get the required answer.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
