
All possible two factor’s products are formed from numbers \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\]. Find the number of factors out of the total obtained factors which are multiples of 5.
A. \[5040\]
B. \[7180\]
C. \[8150\]
D. None of these
Answer
162.9k+ views
Hint: First, calculate the total number of two factor products. Then, find the number of numbers which are not multiples of 5 from 1 to \[200\]. After that, calculate the total number of two factor products which are not multiple of 5. In the end, subtract the total number of two factor products which are not multiple of 5 from the total number of two factor products and get the required answer.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
