
All possible two factor’s products are formed from numbers \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\]. Find the number of factors out of the total obtained factors which are multiples of 5.
A. \[5040\]
B. \[7180\]
C. \[8150\]
D. None of these
Answer
219.3k+ views
Hint: First, calculate the total number of two factor products. Then, find the number of numbers which are not multiples of 5 from 1 to \[200\]. After that, calculate the total number of two factor products which are not multiple of 5. In the end, subtract the total number of two factor products which are not multiple of 5 from the total number of two factor products and get the required answer.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Formula Used:The combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Factorial: \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
Complete step by step solution:The given numbers are \[1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}....,{\rm{ }}200\].
The total number of two factor products are: \[{}^{200}{C_2}\] \[.....\left( 1 \right)\]
Now find the number of numbers which are not multiples of 5 from 1 to \[200\].
We know that, \[5,{\rm{ 10}},{\rm{ 15}},{\rm{ 20}},{\rm{ }}....,{\rm{ }}200\] are the \[40\] multiples of 5.
So, the numbers from 1 to \[200\] which are not multiples of 5: \[160\]
Therefore, the number of two-factor products which are not multiples 5: \[{}^{160}{C_2}\] \[.....\left( 2 \right)\]
To calculate the number of factors out of the total obtained factors which are multiples of 5, subtract equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
We get,
\[{}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!\left( {200 - 2} \right)!}} - \dfrac{{160!}}{{2!\left( {160 - 2} \right)!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200!}}{{2!198!}} - \dfrac{{160!}}{{2!158!}}\]
Simplify the right-hand side by applying the formula \[n! = 1 \times 2 \times ... \times n = n\left( {n - 1} \right)!\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199 \times 198!}}{{2!198!}} - \dfrac{{160 \times 159 \times 158!}}{{2!158!}}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = \dfrac{{200 \times 199}}{2} - \dfrac{{160 \times 159}}{2}\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 19900 - 12720\]
\[ \Rightarrow {}^{200}{C_2} - {}^{160}{C_2} = 7180\]
Thus, the number of factors which are multiples of 5 is \[7180\].
Option ‘B’ is correct
Note: Students often get confused and consider the combination formula as \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], which is an incorrect formula. Because of this, they get the wrong solution.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

