
\[A{{l}_{4}}{{C}_{3}}\] on hydrolysis gives X gas. How many H atoms are present in an X molecule?
Answer
219.6k+ views
Hint: To solve this question we should know that hydrolysis is any chemical reaction in which a molecule of water ruptures one or more chemical bonds. We should know that aluminium carbide is a quite hard substance and is often used as an abrasive material.
Step by step answer:
We should know that \[A{{l}_{4}}{{C}_{3}}\] is carbide of aluminium. It has the appearance of pale yellow to brown crystals. It is stable up to$ 1400^oC$ . It decomposes in water with the production of methane.
Decomposition reaction of Aluminium carbide is as follows:
Aluminium carbide hydrolyses with the evolution of methane. The reaction proceeds at room temperature but is rapidly accelerated by heating.
\[A{{l}_{4}}{{C}_{3}}+12{{H}_{2}}O\to 4Al{{\left( OH \right)}_{3}}+3C{{H}_{4}}\uparrow \]
So, the “X” molecule is methane. And the number of hydrogen atoms present in X molecule or methane is 4. So, our correct answer is 4.
Additional information:
There are many ways through which we can produce aluminium carbide. It is prepared by direct reaction of aluminium and carbon in an electric arc furnace.
\[4Al\text{ }+\text{ }3C\to A{{l}_{4}}{{C}_{3}}\]
We can also make it by beginning with alumina, but it is less favourable because of generation of carbon monoxide.
\[2\text{ }A{{l}_{2}}{{O}_{3}}+9\text{ }C\text{ }\to \text{ }A{{l}_{4}}{{C}_{3}}+6CO\]
Silicon carbide also reacts with aluminium to yield aluminium carbide. This conversion limits the mechanical applications of SiC, because aluminium carbide is more brittle than silicon carbide.
\[4Al+3\text{ }SiC\to \text{ }A{{l}_{4}}{{C}_{3}}+3Si\]
Note: We should know about the applications of aluminium carbide. Aluminium carbide is used as an abrasive in high-speed cutting tools. It has approximately the same hardness as topaz. Aluminium carbide particles finely dispersed in aluminium matrix lower the tendency of the material to creep, especially in combination with silicon carbide particles.
Step by step answer:
We should know that \[A{{l}_{4}}{{C}_{3}}\] is carbide of aluminium. It has the appearance of pale yellow to brown crystals. It is stable up to$ 1400^oC$ . It decomposes in water with the production of methane.
Decomposition reaction of Aluminium carbide is as follows:
Aluminium carbide hydrolyses with the evolution of methane. The reaction proceeds at room temperature but is rapidly accelerated by heating.
\[A{{l}_{4}}{{C}_{3}}+12{{H}_{2}}O\to 4Al{{\left( OH \right)}_{3}}+3C{{H}_{4}}\uparrow \]
So, the “X” molecule is methane. And the number of hydrogen atoms present in X molecule or methane is 4. So, our correct answer is 4.
Additional information:
There are many ways through which we can produce aluminium carbide. It is prepared by direct reaction of aluminium and carbon in an electric arc furnace.
\[4Al\text{ }+\text{ }3C\to A{{l}_{4}}{{C}_{3}}\]
We can also make it by beginning with alumina, but it is less favourable because of generation of carbon monoxide.
\[2\text{ }A{{l}_{2}}{{O}_{3}}+9\text{ }C\text{ }\to \text{ }A{{l}_{4}}{{C}_{3}}+6CO\]
Silicon carbide also reacts with aluminium to yield aluminium carbide. This conversion limits the mechanical applications of SiC, because aluminium carbide is more brittle than silicon carbide.
\[4Al+3\text{ }SiC\to \text{ }A{{l}_{4}}{{C}_{3}}+3Si\]
Note: We should know about the applications of aluminium carbide. Aluminium carbide is used as an abrasive in high-speed cutting tools. It has approximately the same hardness as topaz. Aluminium carbide particles finely dispersed in aluminium matrix lower the tendency of the material to creep, especially in combination with silicon carbide particles.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

