
After 2 hours, only 1/16th of the original decaying nuclei were present. What is the half-life of the sample?
Answer
125.4k+ views
Hint: Half-Life as the name suggests it is the required time interval for a radioactive sample to decay to its one-half. It can also be stated as the required time interval that is needed for a number of radioactive disintegration each second of a radioactive material to get to its one-half.
Complete step by step solution:
Find the Half-Life:
$N\left( t \right) = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{1/2}}}}}}$;
Here:
$N\left( t \right)$= Quantity of the Substance remaining;
${N_o}$ = Quantity of the original substance;
t = Time elapsed;
${t_{1/2}}$= Half – Life.
Put in the given values:
$\left( {\dfrac{1}{{16}}} \right){N_o} = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Cancel out the common factors:
$ \Rightarrow \left( {\dfrac{1}{{16}}} \right) = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Make the base on the LHS to the RHS and compare their powers:
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^4} = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Do the needed mathematical Calculations:
$ \Rightarrow \dfrac{2}{{{t_{1/2}}}} = 4$;
So, the half-life would be:
$ \Rightarrow 2 = 4 \times {t_{1/2}}$;
$ \Rightarrow {t_{1/2}} = \dfrac{1}{2}$;
In terms of minutes;
${t_{1/2}} = 30\min $;
The half-life of the sample is 30min.
Additional information:
There are various types of radioactive decays available such as Alpha decay, Beta-Decay and Gamma Decay. These decays happen due to the instability in the nucleus of an atom. The more unstable the nucleus the higher would be the energy of radioactive decay. The lowest level of energy decay is in alpha decay, Beta decay has higher energy decay than alpha decay and in the Gamma decay it is the highest.
Note: Here the quantity of the substance remaining is one sixteenth of the original substance and we have given the time elapsed as 2 hours. Here apply the formula for Half-Life and calculate the known variable.
Complete step by step solution:
Find the Half-Life:
$N\left( t \right) = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{1/2}}}}}}$;
Here:
$N\left( t \right)$= Quantity of the Substance remaining;
${N_o}$ = Quantity of the original substance;
t = Time elapsed;
${t_{1/2}}$= Half – Life.
Put in the given values:
$\left( {\dfrac{1}{{16}}} \right){N_o} = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Cancel out the common factors:
$ \Rightarrow \left( {\dfrac{1}{{16}}} \right) = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Make the base on the LHS to the RHS and compare their powers:
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^4} = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Do the needed mathematical Calculations:
$ \Rightarrow \dfrac{2}{{{t_{1/2}}}} = 4$;
So, the half-life would be:
$ \Rightarrow 2 = 4 \times {t_{1/2}}$;
$ \Rightarrow {t_{1/2}} = \dfrac{1}{2}$;
In terms of minutes;
${t_{1/2}} = 30\min $;
The half-life of the sample is 30min.
Additional information:
There are various types of radioactive decays available such as Alpha decay, Beta-Decay and Gamma Decay. These decays happen due to the instability in the nucleus of an atom. The more unstable the nucleus the higher would be the energy of radioactive decay. The lowest level of energy decay is in alpha decay, Beta decay has higher energy decay than alpha decay and in the Gamma decay it is the highest.
Note: Here the quantity of the substance remaining is one sixteenth of the original substance and we have given the time elapsed as 2 hours. Here apply the formula for Half-Life and calculate the known variable.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Allylic Substitution Reaction Important Concepts and Tips for JEE

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Login 2045: Step-by-Step Instructions and Details

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Other Pages
Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Charging and Discharging of Capacitor

Physics Average Value and RMS Value JEE Main 2025

Clemmenson and Wolff Kishner Reductions for JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
