
What is the acceleration due to gravity on the top of Mount Everest? Mount Everest is the highest mountain peak of the world at the height of \[8848\text{ }m\]. The value at sea level is $9.80m/{{s}^{2}}$.
Answer
232.8k+ views
Hint: The acceleration due to gravity depends on the mass of Earth.
The acceleration due to gravity is calculated using Newton’s law of gravity.
To find the acceleration due to gravity we use the formula,
$g=\dfrac{GM}{{{r}^{2}}}$
Where, $M$ is the mass of the body and $r$ is the distance from the center of mass of the body to the point where we need to calculate the acceleration due to gravity. Acceleration due to gravity is defined as the gravitational force of attraction acting per unit mass.
Complete step by step solution:
Using Newton’s law of gravitation,
$g\left( r \right)=\dfrac{GM}{{{r}^{2}}}$
Where,
$g\left( r \right)=$The gravitational field strength
G = The universal gravitational constant
M = The mass of earth
r = The distance from the center of earth
If a point is at an altitude of $h$ from the surface of earth, then value of $r$ can be calculated as
$r={{R}_{e}}+h$, where, ${{R}_{e}}$ is the radius of the earth
Putting $h=0$ we get the gravitational field strength at the surface of earth.
It is given that the acceleration due to gravity on the surface is $9.8m/{{s}^{2}}$
From the formula for acceleration due to gravity,
$ g=\dfrac{GM}{R_{e}^{2}} $
$ 9.8m/{{s}^{2}}=\dfrac{GM}{R_{e}^{2}}\ldots \ldots \left( i \right)
$
At Mount Everest, let the acceleration due to gravity is ${{g}_{ME}}$
Then,
${{g}_{ME}}=\dfrac{GM}{{{r}^{2}}} $
$=\dfrac{\left( \dfrac{GM}{R_{e}^{2}} \right)}{\left( \dfrac{{{r}^{2}}}{R_{e}^{2}} \right)}$
$ =\dfrac{g}{{{\left( \dfrac{r}{{{R}_{e}}} \right)}^{2}}}\ldots \ldots \left( \text{from equation }i \right) $
$ =\dfrac{g}{{{\left( \dfrac{{{R}_{e}}+h}{{{R}_{e}}} \right)}^{2}}}$
$=g{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{-2}}$
As, $h\ll {{R}_{e}}$
Using approximation we get
${{g}_{ME}}=g\left( 1-\dfrac{2h}{{{R}_{e}}} \right)$
Radius of earth ${{R}_{e}}=6371km=6371000m$
Putting the value in acceleration due to gravity at Mount Everest, we get
$ {{g}_{ME}}=9.8\left( 1-\dfrac{2\times 8848}{6371000} \right)m/{{s}^{2}}$
$ =9.773m/{{s}^{2}} $
Hence, the acceleration due to gravity at a point on Mount Everest is $9.773m/{{s}^{2}}$.
Note: The magnitude of acceleration due to gravity decreases as we move above the surface of the earth or down the surface of the earth. We should be careful while using the approximation. As if the point is very close to the surface of earth then acceleration due to gravity is approximately the same as that on the sea level.
The acceleration due to gravity is calculated using Newton’s law of gravity.
To find the acceleration due to gravity we use the formula,
$g=\dfrac{GM}{{{r}^{2}}}$
Where, $M$ is the mass of the body and $r$ is the distance from the center of mass of the body to the point where we need to calculate the acceleration due to gravity. Acceleration due to gravity is defined as the gravitational force of attraction acting per unit mass.
Complete step by step solution:
Using Newton’s law of gravitation,
$g\left( r \right)=\dfrac{GM}{{{r}^{2}}}$
Where,
$g\left( r \right)=$The gravitational field strength
G = The universal gravitational constant
M = The mass of earth
r = The distance from the center of earth
If a point is at an altitude of $h$ from the surface of earth, then value of $r$ can be calculated as
$r={{R}_{e}}+h$, where, ${{R}_{e}}$ is the radius of the earth
Putting $h=0$ we get the gravitational field strength at the surface of earth.
It is given that the acceleration due to gravity on the surface is $9.8m/{{s}^{2}}$
From the formula for acceleration due to gravity,
$ g=\dfrac{GM}{R_{e}^{2}} $
$ 9.8m/{{s}^{2}}=\dfrac{GM}{R_{e}^{2}}\ldots \ldots \left( i \right)
$
At Mount Everest, let the acceleration due to gravity is ${{g}_{ME}}$
Then,
${{g}_{ME}}=\dfrac{GM}{{{r}^{2}}} $
$=\dfrac{\left( \dfrac{GM}{R_{e}^{2}} \right)}{\left( \dfrac{{{r}^{2}}}{R_{e}^{2}} \right)}$
$ =\dfrac{g}{{{\left( \dfrac{r}{{{R}_{e}}} \right)}^{2}}}\ldots \ldots \left( \text{from equation }i \right) $
$ =\dfrac{g}{{{\left( \dfrac{{{R}_{e}}+h}{{{R}_{e}}} \right)}^{2}}}$
$=g{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{-2}}$
As, $h\ll {{R}_{e}}$
Using approximation we get
${{g}_{ME}}=g\left( 1-\dfrac{2h}{{{R}_{e}}} \right)$
Radius of earth ${{R}_{e}}=6371km=6371000m$
Putting the value in acceleration due to gravity at Mount Everest, we get
$ {{g}_{ME}}=9.8\left( 1-\dfrac{2\times 8848}{6371000} \right)m/{{s}^{2}}$
$ =9.773m/{{s}^{2}} $
Hence, the acceleration due to gravity at a point on Mount Everest is $9.773m/{{s}^{2}}$.
Note: The magnitude of acceleration due to gravity decreases as we move above the surface of the earth or down the surface of the earth. We should be careful while using the approximation. As if the point is very close to the surface of earth then acceleration due to gravity is approximately the same as that on the sea level.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

