
ABCD is a rectangular field. A vertical lamp post of height 12 m stands at the corner A. If the angle of elevation of its top from B is 60° and from C is 45°. then the area of the field is
A. $48\sqrt{2\,}$sq m
B. $48\sqrt{3}$ sq m
C. $12\sqrt{3}$sq m
D. $12\sqrt{2}$sq m
Answer
232.8k+ views
Hint:
We use Pythagoras theorem to solve this question. The well-known Pythagorean Theorem states that the square on the hypotenuse of a right triangle equals the sum of the squares on its legs. First we find the values of AB and AC by using simple trigonometric functions. Then by using Pythagoras theorem we find the value of BC and after that we are able to find the area of the field.
Formula Used:
The formula for the Pythagoras theorem is written as $H^{2}=P^{2}+B^{2}$, where
$H^{2}$ is the hypotenuse of the right triangle
and $P$ and $B$ are its other two legs
Complete Step by step Solution:
Let EA be the lamppost at corner A and ABCD be the rectangular field.

Since AE is a vertical pole, all lines in the planes of the rectangular grid are perpendicular to it, i.e., EA is perp. to AB, BC, CD, and DA.
$\therefore \angle \mathrm{EAD}=90^{\circ}$
Given,
$E A=12 \mathrm{~m}$
Join E B, E C, and A C
Also Given that
$\angle \mathrm{EBA}=60^{\circ}, \angle \mathrm{ACE}=45^{\circ} .$
In . $\triangle A B E$,
$\tan 60^{\circ}=\dfrac{A E}{A B}=\dfrac{12}{A B}$
$\Rightarrow \sqrt{3}=\dfrac{12}{A B}$
$\Rightarrow A B=\dfrac{12}{\sqrt{3}}=4 \sqrt{3} \mathrm{~m}$
In $\triangle$ ACE,
$\tan 45^{\circ}=\dfrac{A E}{A C}$
$\Rightarrow \dfrac{12}{A C}=1$
$\Rightarrow A C=12 \mathrm{~m}$
In $\triangle A B C$,
According to the Pythagoras theorem
$\mathrm{BC}=\sqrt{A C^{2}-A B^{2}}$
$=\sqrt{144-48}$
$=\sqrt{96} \mathrm{~m}$
$=4 \sqrt{6} \mathrm{~m}$
Area of the rectangular field $=\mathrm{AB} \times \mathrm{BC}$
$=4 \sqrt{3} \times 4 \sqrt{6}$
$=48 \sqrt{2}$ sq. $\mathrm{m}$
So the correct answer is option A.
Note: The formula for the Pythagoras theorem is written as $H^{2}=P^{2}+B^{2}$, where $H^{2}$ is the hypotenuse of the right triangle and $P$ and $B$ are its other two legs. As a result, the Pythagoras equation can be used to any triangle that has one angle that is exactly 90 degrees to create a Pythagoras triangle.
We use Pythagoras theorem to solve this question. The well-known Pythagorean Theorem states that the square on the hypotenuse of a right triangle equals the sum of the squares on its legs. First we find the values of AB and AC by using simple trigonometric functions. Then by using Pythagoras theorem we find the value of BC and after that we are able to find the area of the field.
Formula Used:
The formula for the Pythagoras theorem is written as $H^{2}=P^{2}+B^{2}$, where
$H^{2}$ is the hypotenuse of the right triangle
and $P$ and $B$ are its other two legs
Complete Step by step Solution:
Let EA be the lamppost at corner A and ABCD be the rectangular field.

Since AE is a vertical pole, all lines in the planes of the rectangular grid are perpendicular to it, i.e., EA is perp. to AB, BC, CD, and DA.
$\therefore \angle \mathrm{EAD}=90^{\circ}$
Given,
$E A=12 \mathrm{~m}$
Join E B, E C, and A C
Also Given that
$\angle \mathrm{EBA}=60^{\circ}, \angle \mathrm{ACE}=45^{\circ} .$
In . $\triangle A B E$,
$\tan 60^{\circ}=\dfrac{A E}{A B}=\dfrac{12}{A B}$
$\Rightarrow \sqrt{3}=\dfrac{12}{A B}$
$\Rightarrow A B=\dfrac{12}{\sqrt{3}}=4 \sqrt{3} \mathrm{~m}$
In $\triangle$ ACE,
$\tan 45^{\circ}=\dfrac{A E}{A C}$
$\Rightarrow \dfrac{12}{A C}=1$
$\Rightarrow A C=12 \mathrm{~m}$
In $\triangle A B C$,
According to the Pythagoras theorem
$\mathrm{BC}=\sqrt{A C^{2}-A B^{2}}$
$=\sqrt{144-48}$
$=\sqrt{96} \mathrm{~m}$
$=4 \sqrt{6} \mathrm{~m}$
Area of the rectangular field $=\mathrm{AB} \times \mathrm{BC}$
$=4 \sqrt{3} \times 4 \sqrt{6}$
$=48 \sqrt{2}$ sq. $\mathrm{m}$
So the correct answer is option A.
Note: The formula for the Pythagoras theorem is written as $H^{2}=P^{2}+B^{2}$, where $H^{2}$ is the hypotenuse of the right triangle and $P$ and $B$ are its other two legs. As a result, the Pythagoras equation can be used to any triangle that has one angle that is exactly 90 degrees to create a Pythagoras triangle.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

