
ABC is a triangle, then find \[{a^2}\left( {{{\cos }^2}B - {{\cos }^2}C} \right) + {b^2}\left( {{{\cos }^2}C - {{\cos }^2}A} \right) + {c^2}\left( {{{\cos }^2}A - {{\cos }^2}B} \right)\].
A. 0
B. 1
C. \[{a^2} + {b^2} + {c^2}\]
D. \[2\left( {{a^2} + {b^2} + {c^2}} \right)\]
Answer
232.8k+ views
Hint: First we will convert all \[\cos \] function into \[\sin \] function using trigonometry identity. Then using the sine law, we will find the value of \[\sin A\], \[\sin B\] and \[\sin C\]. After that we will substitute the value of \[\sin A\], \[\sin B\] and \[\sin C\] in the given expression.
Formula used:
Sine law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Trigonometry identity
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step solution:
Given expression is \[{a^2}\left( {{{\cos }^2}B - {{\cos }^2}C} \right) + {b^2}\left( {{{\cos }^2}C - {{\cos }^2}A} \right) + {c^2}\left( {{{\cos }^2}A - {{\cos }^2}B} \right)\]
Now applying the trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[ = {a^2}\left( {1 - {{\sin }^2}B - 1 + {{\sin }^2}C} \right) + {b^2}\left( {1 - {{\sin }^2}C - 1 + {{\sin }^2}A} \right) + {c^2}\left( {1 - {{\sin }^2}A - 1 + {{\sin }^2}B} \right)\]
\[ = {a^2}\left( {{{\sin }^2}C - {{\sin }^2}B} \right) + {b^2}\left( {{{\sin }^2}A - {{\sin }^2}C} \right) + {c^2}\left( {{{\sin }^2}B - {{\sin }^2}A} \right)\] …..(i)
We know that,
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {{\rm{say}}} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\] in the expression (i)
\[ = {a^2}\left( {{c^2}{k^2} - {b^2}{k^2}} \right) + {b^2}\left( {{a^2}{k^2} - {c^2}{k^2}} \right) + {c^2}\left( {{b^2}{k^2} - {a^2}{k^2}} \right)\]
Simplify the above expression
\[ = {a^2}{c^2}{k^2} - {a^2}{b^2}{k^2} + {b^2}{a^2}{k^2} - {b^2}{c^2}{k^2} + {c^2}{b^2}{k^2} - {c^2}{a^2}{k^2}\]
Cancel out the opposite term
\[ = 0\]
Hence option A is the correct option.
Note: Students often make a common mistake to solve the given question. They apply cosine law to solve the given question. But the given question should be solved by using trigonometry identity and the sine law.
Formula used:
Sine law
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Trigonometry identity
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step solution:
Given expression is \[{a^2}\left( {{{\cos }^2}B - {{\cos }^2}C} \right) + {b^2}\left( {{{\cos }^2}C - {{\cos }^2}A} \right) + {c^2}\left( {{{\cos }^2}A - {{\cos }^2}B} \right)\]
Now applying the trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[ = {a^2}\left( {1 - {{\sin }^2}B - 1 + {{\sin }^2}C} \right) + {b^2}\left( {1 - {{\sin }^2}C - 1 + {{\sin }^2}A} \right) + {c^2}\left( {1 - {{\sin }^2}A - 1 + {{\sin }^2}B} \right)\]
\[ = {a^2}\left( {{{\sin }^2}C - {{\sin }^2}B} \right) + {b^2}\left( {{{\sin }^2}A - {{\sin }^2}C} \right) + {c^2}\left( {{{\sin }^2}B - {{\sin }^2}A} \right)\] …..(i)
We know that,
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {{\rm{say}}} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\] in the expression (i)
\[ = {a^2}\left( {{c^2}{k^2} - {b^2}{k^2}} \right) + {b^2}\left( {{a^2}{k^2} - {c^2}{k^2}} \right) + {c^2}\left( {{b^2}{k^2} - {a^2}{k^2}} \right)\]
Simplify the above expression
\[ = {a^2}{c^2}{k^2} - {a^2}{b^2}{k^2} + {b^2}{a^2}{k^2} - {b^2}{c^2}{k^2} + {c^2}{b^2}{k^2} - {c^2}{a^2}{k^2}\]
Cancel out the opposite term
\[ = 0\]
Hence option A is the correct option.
Note: Students often make a common mistake to solve the given question. They apply cosine law to solve the given question. But the given question should be solved by using trigonometry identity and the sine law.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

