
A wire of length L and uniform mass density \[\rho \] is bent into a circular loop with center at O as shown. The moment of inertia of the loop about the axis XX’ is:

A. \[\dfrac{{\rho {L^3}}}{{8{\pi ^2}}} \\ \]
B. \[\dfrac{{\rho {L^3}}}{{16{\pi ^2}}} \\ \]
C. \[\dfrac{{5\rho {L^3}}}{{16{\pi ^2}}} \\ \]
D. \[\dfrac{{3\rho {L^3}}}{{8{\pi ^2}}}\]
Answer
163.2k+ views
Hint:To find the moment of inertia of a body about an axis parallel to another axis of rotation when the moment of inertia about the known axis of rotation is known, we use the parallel axis theorem.
Formula used:
\[I = {I_{cm}} + m{d^2}\]
Here, I is the moment inertia about the required axis of rotation, \[{I_{cm}}\] is the moment of inertia of about center of mass, m is the mass of the body and d is the distance of the required axis of rotation from the center of mass.
The moment of inertia of circular loop of mass m and radius r about diameter is given as,
\[{I_O} = \dfrac{{m{r^2}}}{2}\],
Here m is the mass of the loop and r is the radius of the loop.
Complete step by step solution:
The given axis of rotation XX’ is parallel to the diameter of the loop.

Image: Wire of length L in circular form
The distance of the axis of rotation from the center of mass is \[d = r\]
The moment of inertia of the circular loop about the diameter is \[{I_{cm}} = \dfrac{{m{r^2}}}{2}\]
The mass of the circular loop of length L having linear mass density \[\rho \]is,
\[m = \rho L\]
If the radius of the circular loop is r then the circumference of the loop will be equal to the total length of loop, i.e. L.
\[2\pi r = L \Rightarrow r = \dfrac{L}{{2\pi }}\]
Putting in the expression for the moment of inertia about the axis of rotation XX’, we get
\[{I_{XX'}} = {I_{cm}} + m{d^2}\]
\[\Rightarrow {I_{XX'}} = \dfrac{{\rho L{{\left( {\dfrac{L}{{2\pi }}} \right)}^2}}}{2} + \rho L{\left( {\dfrac{L}{{2\pi }}} \right)^2}\]
\[{I_{XX'}} = \dfrac{{\rho {L^3}}}{{8{\pi ^2}}} + \dfrac{{\rho {L^3}}}{{4{\pi ^2}}}\]
\[\therefore {I_{XX'}} = \dfrac{{\rho {L^3} + 2\rho {L^3}}}{{8{\pi ^2}}} = \dfrac{{3\rho {L^3}}}{{8{\pi ^2}}}\]
Hence, the moment of inertia of the given circular loop about the axis of rotation XX’ is \[\dfrac{{3\rho {L^3}}}{{8{\pi ^2}}}\].
Therefore, the correct option is D.
Note: The moment of inertia of the circular loop about the diameter is calculated using perpendicular axis theorem. The perpendicular axis theorem is applied where the mass distribution is uniform along the plane of the body.
Formula used:
\[I = {I_{cm}} + m{d^2}\]
Here, I is the moment inertia about the required axis of rotation, \[{I_{cm}}\] is the moment of inertia of about center of mass, m is the mass of the body and d is the distance of the required axis of rotation from the center of mass.
The moment of inertia of circular loop of mass m and radius r about diameter is given as,
\[{I_O} = \dfrac{{m{r^2}}}{2}\],
Here m is the mass of the loop and r is the radius of the loop.
Complete step by step solution:
The given axis of rotation XX’ is parallel to the diameter of the loop.

Image: Wire of length L in circular form
The distance of the axis of rotation from the center of mass is \[d = r\]
The moment of inertia of the circular loop about the diameter is \[{I_{cm}} = \dfrac{{m{r^2}}}{2}\]
The mass of the circular loop of length L having linear mass density \[\rho \]is,
\[m = \rho L\]
If the radius of the circular loop is r then the circumference of the loop will be equal to the total length of loop, i.e. L.
\[2\pi r = L \Rightarrow r = \dfrac{L}{{2\pi }}\]
Putting in the expression for the moment of inertia about the axis of rotation XX’, we get
\[{I_{XX'}} = {I_{cm}} + m{d^2}\]
\[\Rightarrow {I_{XX'}} = \dfrac{{\rho L{{\left( {\dfrac{L}{{2\pi }}} \right)}^2}}}{2} + \rho L{\left( {\dfrac{L}{{2\pi }}} \right)^2}\]
\[{I_{XX'}} = \dfrac{{\rho {L^3}}}{{8{\pi ^2}}} + \dfrac{{\rho {L^3}}}{{4{\pi ^2}}}\]
\[\therefore {I_{XX'}} = \dfrac{{\rho {L^3} + 2\rho {L^3}}}{{8{\pi ^2}}} = \dfrac{{3\rho {L^3}}}{{8{\pi ^2}}}\]
Hence, the moment of inertia of the given circular loop about the axis of rotation XX’ is \[\dfrac{{3\rho {L^3}}}{{8{\pi ^2}}}\].
Therefore, the correct option is D.
Note: The moment of inertia of the circular loop about the diameter is calculated using perpendicular axis theorem. The perpendicular axis theorem is applied where the mass distribution is uniform along the plane of the body.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
