Answer

Verified

88.5k+ views

**Hint**When the wire is slid along the rails, an e.m.f. is developed in it. This difference in potential causes the capacitor to store a charge. The rate of change of this charge with respect to time gives the current flowing through the capacitor. This can be used to calculate the force on the wire and the net force is divided by m to give the value of acceleration.

**Complete step by step answer:**

The movement of the conductor perpendicular to a magnetic field produces an e.m.f. in it.

This e.m.f is given by-

$\varepsilon = Bvl$

Where B is the intensity of the Magnetic field.

v is the velocity of the wire

And l is the length of the wire.

This movement causes a flow of charge and this charge is stored in the capacitor.

Charge stored in a capacitor is given by-

$Q = CV$

Here V is the potential difference, which is equal to the produced e.m.f. $\varepsilon $.

Putting the value of $\varepsilon $here, we have-

$Q = C(Bvl)$

The rate of flow of charge is known as current, it can be obtained by differentiating the charge with respect to time.

Therefore,

$i = \dfrac{{dQ}}{{dt}} = BCl\left( {\dfrac{{dv}}{{dt}}} \right)$

The term $\dfrac{{dv}}{{dt}}$ is the acceleration of the wire, which can be represented by a therefore the current flow in the wire can be written as-

$i = BCla$

The same current also passes in the wire, so magnetic force $\left( {{F_b}} \right)$ can be given by-

${F_b} = Bil$

${F_b} = B(BCla)l$

${F_b} = {B^2}C{l^2}a$

This makes the total forces acting on the wire two. On balancing the net force can be given by-

${F_{net}} = F - {F_b}$

$ma = F - {B^2}{l^2}Ca$

On rearranging,

$F = a(m + {B^2}{l^2}C)$

Therefore the acceleration is given by-

$a = \dfrac{F}{{m + {B^2}{l^2}C}}$

**Hence, option (D) is correct.**

**Note:**The currents in both wires are assumed to be equal because there is a mention about no losses in the question, generally inductance has very less amount of losses but there is always a loss associated with a device.

Recently Updated Pages

Name the scale on which the destructive energy of an class 11 physics JEE_Main

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main