
(A) What is de Broglie hypothesis?
(B) Write the formula for de Broglie wavelength.
(C) Calculate de Broglie wavelength associated with an electron accelerated by a potential difference of $100\,volts$.
Given the mass of the electron = $9.1 \times {10^{ - 31}}kg$, $h = 6.634 \times {10^{ - 34}}Js$, $1\,eV = 1.6 \times {10^{ - 19}}J$
Answer
218.4k+ views
Hint De Broglie's hypothesis related the wavelength of a particle to its momentum. In quantum mechanics, as we zoom into the subatomic level, matter doesn’t always necessarily exhibit the particle behavior as we expect. It also behaves as a wave at the microscopic level.
Formulas used: For de Broglie wavelength $\lambda = \dfrac{h}{p}$ and momentum $p = \sqrt {2meV} $
Complete Step by step solution
The de Broglie hypothesis proposes that all matter exists in a dual state of waves and particles exhibiting wave-like properties. It relates the observed wavelength of a particle to its momentum.
The de Broglie wavelength $\lambda $ of a particle is associated with its momentum $p$, as per the formula $\lambda = \dfrac{h}{p}$, where $h$ is the Planck constant.
The momentum $p$ in the above formula is given by $p = \sqrt {2meV} $, where $m$ is the mass of the electron, $e$ is the charge of an electron, and $V$ is the potential difference through which the electron has been accelerated.
We calculate the de Broglie wavelength of an electron been accelerated by a potential difference of $100\,volts$ using the formula $\lambda = \dfrac{h}{p}$, and substituting the momentum $p = \sqrt {2meV} $.
Thus we get $\lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting the values of $h$ ,$m$ and $e$ we get
$\lambda = \dfrac{{6.634 \times {{10}^{ - 34}}Js}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}}kg \times 1.6 \times {{10}^{ - 19}}C \times 100\,V} }}$
Upon further solving we get,
$\lambda = \dfrac{{6.634 \times {{10}^{ - 10}}}}{{\sqrt {2 \times 9.1 \times 1.6} }}m$
$ \Rightarrow \lambda = \dfrac{{6.634 \times {{10}^{ - 10}}}}{{5.396}}m = 1.229 \times {10^{ - 10}}\,m$
Hence the required answer is $1.23 \times {10^{ - 10}}\,m$.
Note The mass of the electron used in this formula is the rest mass of the particle and we generally use the rest mass in such equations unless specified. Also, the charge of the electron has been replaced in the formula with $1\,eV$, as an electron volt is the amount of energy gained by an electron when it is accelerated in a potential difference of $1\,Volt$ (numerical values of both being the same).
Formulas used: For de Broglie wavelength $\lambda = \dfrac{h}{p}$ and momentum $p = \sqrt {2meV} $
Complete Step by step solution
The de Broglie hypothesis proposes that all matter exists in a dual state of waves and particles exhibiting wave-like properties. It relates the observed wavelength of a particle to its momentum.
The de Broglie wavelength $\lambda $ of a particle is associated with its momentum $p$, as per the formula $\lambda = \dfrac{h}{p}$, where $h$ is the Planck constant.
The momentum $p$ in the above formula is given by $p = \sqrt {2meV} $, where $m$ is the mass of the electron, $e$ is the charge of an electron, and $V$ is the potential difference through which the electron has been accelerated.
We calculate the de Broglie wavelength of an electron been accelerated by a potential difference of $100\,volts$ using the formula $\lambda = \dfrac{h}{p}$, and substituting the momentum $p = \sqrt {2meV} $.
Thus we get $\lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting the values of $h$ ,$m$ and $e$ we get
$\lambda = \dfrac{{6.634 \times {{10}^{ - 34}}Js}}{{\sqrt {2 \times 9.1 \times {{10}^{ - 31}}kg \times 1.6 \times {{10}^{ - 19}}C \times 100\,V} }}$
Upon further solving we get,
$\lambda = \dfrac{{6.634 \times {{10}^{ - 10}}}}{{\sqrt {2 \times 9.1 \times 1.6} }}m$
$ \Rightarrow \lambda = \dfrac{{6.634 \times {{10}^{ - 10}}}}{{5.396}}m = 1.229 \times {10^{ - 10}}\,m$
Hence the required answer is $1.23 \times {10^{ - 10}}\,m$.
Note The mass of the electron used in this formula is the rest mass of the particle and we generally use the rest mass in such equations unless specified. Also, the charge of the electron has been replaced in the formula with $1\,eV$, as an electron volt is the amount of energy gained by an electron when it is accelerated in a potential difference of $1\,Volt$ (numerical values of both being the same).
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

