
A water pipe 4cm in diameter has a constriction of diameter 2cm. Find the rate of discharge of water through the pipe if the velocity of flow of water in the main pipe is $6cm/s$ . Find also the velocity of flow at the constriction. ($75.36 \times {10^{ - 6}}{m^3}/s;24cm/s$ )
Answer
219.9k+ views
Hint: Calculate the cross-sectional area of the pipe. We are already given the velocity of water through the pipe. Multiply the values to get the rate of flow. Then, calculate the velocity of flow at the constriction from the equation of continuity.
Formula used: If the velocity of flow is $v$, and the area of cross-section of the tube is $a$ , then, the rate of flow of liquid through the tube is $va$.
If two sections of a tube have areas ${a_1}$ and ${a_2}$ having velocity ${v_1}$ and ${v_2}$ respectively then, from the equation of continuity we get, ${v_1}{a_1} = {v_2}{a_2}$ .
Complete step by step solution: The rate of flow of a liquid through a tube means the volume of liquid flowing through any cross-section of the tube per second.
So, if the velocity of flow is $v$ and the area of cross-section of the tube is $a$ , then, the rate of flow of liquid through the tube is $va$.
Now, let us focus on the point that is the equation of continuity here. For a streamline flow of any liquid through a tube, be it liquid or gas, the mass of the fluid flowing per second through any cross-section of the tube remains constant.
So, let us have two sections of a tube have areas ${a_1}$ and ${a_2}$ having velocity ${v_1}$ and ${v_2}$ respectively.
Then, from the equation of continuity, ${v_1}{a_1} = {v_2}{a_2}$.
It is given that the velocity of the flow of water in the main pipe is $6cm/s$.
So, ${V_P} = 6cm/s$
Also, the diameter of the pipe is $4cm$.
So, the radius of the pipe is $\dfrac{4}{2}cm = 2cm$
So, the cross-sectional area of the pipe is, $\pi {\left( 2 \right)^2} = 3.14 \times {(2)^2} = 12.56c{m^2}$
So, the rate of discharge of water through the pipe is $\left( {12.56 \times 6} \right) = 75.36c{m^3}/s$
Now, as we know that,
$1cm = {10^{ - 2}}m$
$ \Rightarrow 1c{m^3} = {10^{ - 6}}{m^3}$
Now we will convert the value of rate of discharge of water through pipe in meter,
$\therefore 75.36c{m^3} = 75.36 \times {10^{ - 6}}{m^3}$
$\therefore $ The rate of discharge of water through the pipe is $ = 75.36 \times {10^{ - 6}}{m^3}/s$
Now, let say that the velocity of flow of water in the main pipe be ${V_P}$ and the cross-sectional area of the pipe be ${A_P}$
Also, let, the velocity of flow at the constriction be ${V_C}$ and cross-sectional area of the constriction is ${A_C}$ .
Now, it is given that ${V_P} = 6cm/s$ and ${A_P} = \pi {\left( {\dfrac{4}{2}} \right)^2} = \pi {\left( 2 \right)^2}c{m^2}$
And, ${A_C} = \pi {\left( {\dfrac{2}{2}} \right)^2} = \pi c{m^2}$
So, from the equation of continuity,
${A_P}{V_P} = {A_C}{V_C}$
or, ${V_C} = \dfrac{{{A_P}{V_P}}}{{{A_C}}}$
Putting all the values in the equation, we get,
${V_C} = \dfrac{{\pi {{\left( 2 \right)}^2} \times 6}}{\pi } = \left( {4 \times 6} \right) = 24cm/s$
So, the velocity of flow at the constriction is $24cm/s$ .
Note: From the equation of continuity, we know that ${v_1}{a_1} = {v_2}{a_2}$ . So, we can say that $va = $ constant.
So, $v \propto \dfrac{1}{a}$ , which means that the velocity of the flow of any liquid through any cross-section of a tube is inversely proportional to its cross-sectional area. Also, the equation of continuity expresses the law of conservation of mass.
Formula used: If the velocity of flow is $v$, and the area of cross-section of the tube is $a$ , then, the rate of flow of liquid through the tube is $va$.
If two sections of a tube have areas ${a_1}$ and ${a_2}$ having velocity ${v_1}$ and ${v_2}$ respectively then, from the equation of continuity we get, ${v_1}{a_1} = {v_2}{a_2}$ .
Complete step by step solution: The rate of flow of a liquid through a tube means the volume of liquid flowing through any cross-section of the tube per second.
So, if the velocity of flow is $v$ and the area of cross-section of the tube is $a$ , then, the rate of flow of liquid through the tube is $va$.
Now, let us focus on the point that is the equation of continuity here. For a streamline flow of any liquid through a tube, be it liquid or gas, the mass of the fluid flowing per second through any cross-section of the tube remains constant.
So, let us have two sections of a tube have areas ${a_1}$ and ${a_2}$ having velocity ${v_1}$ and ${v_2}$ respectively.
Then, from the equation of continuity, ${v_1}{a_1} = {v_2}{a_2}$.
It is given that the velocity of the flow of water in the main pipe is $6cm/s$.
So, ${V_P} = 6cm/s$
Also, the diameter of the pipe is $4cm$.
So, the radius of the pipe is $\dfrac{4}{2}cm = 2cm$
So, the cross-sectional area of the pipe is, $\pi {\left( 2 \right)^2} = 3.14 \times {(2)^2} = 12.56c{m^2}$
So, the rate of discharge of water through the pipe is $\left( {12.56 \times 6} \right) = 75.36c{m^3}/s$
Now, as we know that,
$1cm = {10^{ - 2}}m$
$ \Rightarrow 1c{m^3} = {10^{ - 6}}{m^3}$
Now we will convert the value of rate of discharge of water through pipe in meter,
$\therefore 75.36c{m^3} = 75.36 \times {10^{ - 6}}{m^3}$
$\therefore $ The rate of discharge of water through the pipe is $ = 75.36 \times {10^{ - 6}}{m^3}/s$
Now, let say that the velocity of flow of water in the main pipe be ${V_P}$ and the cross-sectional area of the pipe be ${A_P}$
Also, let, the velocity of flow at the constriction be ${V_C}$ and cross-sectional area of the constriction is ${A_C}$ .
Now, it is given that ${V_P} = 6cm/s$ and ${A_P} = \pi {\left( {\dfrac{4}{2}} \right)^2} = \pi {\left( 2 \right)^2}c{m^2}$
And, ${A_C} = \pi {\left( {\dfrac{2}{2}} \right)^2} = \pi c{m^2}$
So, from the equation of continuity,
${A_P}{V_P} = {A_C}{V_C}$
or, ${V_C} = \dfrac{{{A_P}{V_P}}}{{{A_C}}}$
Putting all the values in the equation, we get,
${V_C} = \dfrac{{\pi {{\left( 2 \right)}^2} \times 6}}{\pi } = \left( {4 \times 6} \right) = 24cm/s$
So, the velocity of flow at the constriction is $24cm/s$ .
Note: From the equation of continuity, we know that ${v_1}{a_1} = {v_2}{a_2}$ . So, we can say that $va = $ constant.
So, $v \propto \dfrac{1}{a}$ , which means that the velocity of the flow of any liquid through any cross-section of a tube is inversely proportional to its cross-sectional area. Also, the equation of continuity expresses the law of conservation of mass.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

