
A vector of length $l$ is turned through the angle $\theta $ about its tail. What is the change in the position vector of its head?
A) $l \cos(\dfrac{\theta}{2})$
B) $2l \sin(\dfrac{\theta}{2})$
C) $2l \cos(\dfrac{\theta}{2})$
D) $l \sin(\dfrac{\theta}{2})$
Answer
171.3k+ views
Hint: When a vector is turned through the angle $\theta $ , it will not change the magnitude of the vector. The only thing we need to calculate is the direction of the vector. Since the position of the tail will be unchanged we can calculate the change in position of the head of the vector by subtracting the initial vector from the final vector.
Complete step by step solution:
Let us denote the initial vector by $\overrightarrow {{v_1}} $ and the vector after turning $\theta $ by $\overrightarrow {{v_2}}$. The length of the vector is given which is $l$ . Now give an expression for the change in the position vector
\[\therefore \Delta \overrightarrow v = \overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} \]……….equation (1)
Squaring on both sides in equation (1)
\[\therefore {(\Delta \overrightarrow v )^2} = {(\overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} )^2}\]
We know that on squaring a vector we get its magnitude
\[\therefore \Delta v = {(\overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} )^2}\]
We know that
${\left( {\overrightarrow {{v_2}} - \overrightarrow {{v_1}} } \right)^2} = \sqrt {{{\left| {\overrightarrow {{v_2}} } \right|}^2} + {{\left| {\overrightarrow {{v_1}} } \right|}^2} - 2\left| {{v_2}} \right|\left| {{v_1}} \right|\cos \theta } $
$\therefore \Delta v = \sqrt {{{\left| {\overrightarrow {{v_2}} } \right|}^2} + {{\left| {\overrightarrow {{v_1}} } \right|}^2} - 2\left| {{v_2}} \right|\left| {{v_1}} \right|\cos \theta } $
Since the length of the vector will not change, therefore $\left| {\overrightarrow {{v_1}} } \right| = \left| {\overrightarrow {{v_2}} } \right| = l$ . Now put this value in the above equation
$\therefore \Delta v = \sqrt {{l^2} + {l^2} - 2{l^2}\cos \theta } $
$ \Rightarrow \Delta v = \sqrt {2{l^2} - 2{l^2}\cos \theta } $
Take $2{l^2}$ common
$\therefore \Delta v = \sqrt {2{l^2}(1 - \cos \theta )} $
We can write $\cos \theta $ as \[1 - 2{\sin ^2}(\dfrac{\theta}{2})\]
$\therefore \Delta v = \sqrt {2{l^2}(1 - 1 + 2{\sin ^2}(\dfrac{\theta}{2}))}$
$ \Rightarrow \Delta v = \sqrt {2{l^2} \times 2 {\sin^2}(\dfrac{\theta}{2})}$
$ \Rightarrow \Delta v = \sqrt {4{l^2}{{\sin }^2}(\dfrac{\theta}{2})}$
Solve the square root on the right-hand side and you will get the desired result
$\therefore \Delta v = 2l \sin(\dfrac{\theta}{2})$
Therefore the correct option is B.
Note: Always remember that when we turn a vector through the angle, the magnitude of the vector will remain the same since we are not altering the length of the vector. The second thing to remember, when we calculate the change in the position vector, we subtract the initial vector from the final vector.
Complete step by step solution:
Let us denote the initial vector by $\overrightarrow {{v_1}} $ and the vector after turning $\theta $ by $\overrightarrow {{v_2}}$. The length of the vector is given which is $l$ . Now give an expression for the change in the position vector
\[\therefore \Delta \overrightarrow v = \overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} \]……….equation (1)
Squaring on both sides in equation (1)
\[\therefore {(\Delta \overrightarrow v )^2} = {(\overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} )^2}\]
We know that on squaring a vector we get its magnitude
\[\therefore \Delta v = {(\overrightarrow {{v_2}} - \overrightarrow {{v_{_1}}} )^2}\]
We know that
${\left( {\overrightarrow {{v_2}} - \overrightarrow {{v_1}} } \right)^2} = \sqrt {{{\left| {\overrightarrow {{v_2}} } \right|}^2} + {{\left| {\overrightarrow {{v_1}} } \right|}^2} - 2\left| {{v_2}} \right|\left| {{v_1}} \right|\cos \theta } $
$\therefore \Delta v = \sqrt {{{\left| {\overrightarrow {{v_2}} } \right|}^2} + {{\left| {\overrightarrow {{v_1}} } \right|}^2} - 2\left| {{v_2}} \right|\left| {{v_1}} \right|\cos \theta } $
Since the length of the vector will not change, therefore $\left| {\overrightarrow {{v_1}} } \right| = \left| {\overrightarrow {{v_2}} } \right| = l$ . Now put this value in the above equation
$\therefore \Delta v = \sqrt {{l^2} + {l^2} - 2{l^2}\cos \theta } $
$ \Rightarrow \Delta v = \sqrt {2{l^2} - 2{l^2}\cos \theta } $
Take $2{l^2}$ common
$\therefore \Delta v = \sqrt {2{l^2}(1 - \cos \theta )} $
We can write $\cos \theta $ as \[1 - 2{\sin ^2}(\dfrac{\theta}{2})\]
$\therefore \Delta v = \sqrt {2{l^2}(1 - 1 + 2{\sin ^2}(\dfrac{\theta}{2}))}$
$ \Rightarrow \Delta v = \sqrt {2{l^2} \times 2 {\sin^2}(\dfrac{\theta}{2})}$
$ \Rightarrow \Delta v = \sqrt {4{l^2}{{\sin }^2}(\dfrac{\theta}{2})}$
Solve the square root on the right-hand side and you will get the desired result
$\therefore \Delta v = 2l \sin(\dfrac{\theta}{2})$
Therefore the correct option is B.
Note: Always remember that when we turn a vector through the angle, the magnitude of the vector will remain the same since we are not altering the length of the vector. The second thing to remember, when we calculate the change in the position vector, we subtract the initial vector from the final vector.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solution for Class 11 Physics Chapter 3 Motion In A Plane - 2025-26
