
A vector A points vertically upward and B points towards north. The vector product \[\overrightarrow A \times \overrightarrow B\] is:
$(A)$ Null vector
$(B)$ Along west
$(C)$ Along east
$(D)$ Vertically downward
Answer
228.6k+ views
Hint: Draw a clear picture of the direction of the vectors along three axes. Note that, vertically upward means the direction along the normal to the plane of the paper in which we are drawing.
After getting the axis of the vectors represent the vectors with unit vectors related to those axes.
Here in the problem cross product is needed, so do the cross product of the vectors find the direction of the product based on the sign.
Formula used:
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along $x,y,z$ axis respectively, then one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Complete step by step answer:
A vector $\overrightarrow A $ is along vertically upward and another vector $\overrightarrow B $ is along the north direction. If this is drawn in a plane of a paper it looks like:

$\overrightarrow A $is along the $z$ axis that is along the normal direction to the plane of the paper. $\overrightarrow B $ is along the $y$ axis that is along the north direction to the plane.
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively, then
\[\overrightarrow A = A\widehat k\]
And, \[\overrightarrow B = B\widehat j\]
We know, one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Hence, $\overrightarrow A \times \overrightarrow B = A\widehat k \times B\widehat j = AB( - \widehat i)$
$\therefore \overrightarrow A \times \overrightarrow B = - AB\widehat i$
Since the unit vector is $\widehat i$ with a negative sign, the resultant vector will be along the negative $x$ axis. From the figure it can be seen that the negative $x$ axis is directed towards the west direction.

Hence the correct option is (B).
Note: $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively. Each of them has a value $1$ .
Since $\overrightarrow A \times \overrightarrow A = 0$ ;
Hence, $\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ .
Again, the value of $\widehat i \times \widehat j = \left| {\widehat i \times \widehat j} \right| = \left( 1 \right).\left( 1 \right).\sin {90^ \circ } = 1$
The rule of right hand cork-screw, the direction of $\widehat i \times \widehat j$ is along the $z$ axis. Since $\widehat k$ is the unit vector along the $z$ axis, so $\widehat i \times \widehat j = \widehat k$
According to this rule, $\widehat i \times \widehat j = \widehat k$, $\widehat j \times \widehat k = \widehat i$ and, \[\widehat k \times \widehat i = \widehat j\]
Since, $\overrightarrow A \times \overrightarrow B = - \overrightarrow B \times \overrightarrow A $
Hence, $\widehat j \times \widehat i = - \widehat k$, $\widehat k \times \widehat j = - \widehat i$ and, \[\widehat i \times \widehat k = - \widehat j\]
After getting the axis of the vectors represent the vectors with unit vectors related to those axes.
Here in the problem cross product is needed, so do the cross product of the vectors find the direction of the product based on the sign.
Formula used:
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along $x,y,z$ axis respectively, then one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Complete step by step answer:
A vector $\overrightarrow A $ is along vertically upward and another vector $\overrightarrow B $ is along the north direction. If this is drawn in a plane of a paper it looks like:

$\overrightarrow A $is along the $z$ axis that is along the normal direction to the plane of the paper. $\overrightarrow B $ is along the $y$ axis that is along the north direction to the plane.
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively, then
\[\overrightarrow A = A\widehat k\]
And, \[\overrightarrow B = B\widehat j\]
We know, one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Hence, $\overrightarrow A \times \overrightarrow B = A\widehat k \times B\widehat j = AB( - \widehat i)$
$\therefore \overrightarrow A \times \overrightarrow B = - AB\widehat i$
Since the unit vector is $\widehat i$ with a negative sign, the resultant vector will be along the negative $x$ axis. From the figure it can be seen that the negative $x$ axis is directed towards the west direction.

Hence the correct option is (B).
Note: $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively. Each of them has a value $1$ .
Since $\overrightarrow A \times \overrightarrow A = 0$ ;
Hence, $\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ .
Again, the value of $\widehat i \times \widehat j = \left| {\widehat i \times \widehat j} \right| = \left( 1 \right).\left( 1 \right).\sin {90^ \circ } = 1$
The rule of right hand cork-screw, the direction of $\widehat i \times \widehat j$ is along the $z$ axis. Since $\widehat k$ is the unit vector along the $z$ axis, so $\widehat i \times \widehat j = \widehat k$
According to this rule, $\widehat i \times \widehat j = \widehat k$, $\widehat j \times \widehat k = \widehat i$ and, \[\widehat k \times \widehat i = \widehat j\]
Since, $\overrightarrow A \times \overrightarrow B = - \overrightarrow B \times \overrightarrow A $
Hence, $\widehat j \times \widehat i = - \widehat k$, $\widehat k \times \widehat j = - \widehat i$ and, \[\widehat i \times \widehat k = - \widehat j\]
Recently Updated Pages
JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

