
A vector A points vertically upward and B points towards north. The vector product \[\overrightarrow A \times \overrightarrow B\] is:
$(A)$ Null vector
$(B)$ Along west
$(C)$ Along east
$(D)$ Vertically downward
Answer
196.5k+ views
Hint: Draw a clear picture of the direction of the vectors along three axes. Note that, vertically upward means the direction along the normal to the plane of the paper in which we are drawing.
After getting the axis of the vectors represent the vectors with unit vectors related to those axes.
Here in the problem cross product is needed, so do the cross product of the vectors find the direction of the product based on the sign.
Formula used:
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along $x,y,z$ axis respectively, then one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Complete step by step answer:
A vector $\overrightarrow A $ is along vertically upward and another vector $\overrightarrow B $ is along the north direction. If this is drawn in a plane of a paper it looks like:

$\overrightarrow A $is along the $z$ axis that is along the normal direction to the plane of the paper. $\overrightarrow B $ is along the $y$ axis that is along the north direction to the plane.
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively, then
\[\overrightarrow A = A\widehat k\]
And, \[\overrightarrow B = B\widehat j\]
We know, one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Hence, $\overrightarrow A \times \overrightarrow B = A\widehat k \times B\widehat j = AB( - \widehat i)$
$\therefore \overrightarrow A \times \overrightarrow B = - AB\widehat i$
Since the unit vector is $\widehat i$ with a negative sign, the resultant vector will be along the negative $x$ axis. From the figure it can be seen that the negative $x$ axis is directed towards the west direction.

Hence the correct option is (B).
Note: $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively. Each of them has a value $1$ .
Since $\overrightarrow A \times \overrightarrow A = 0$ ;
Hence, $\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ .
Again, the value of $\widehat i \times \widehat j = \left| {\widehat i \times \widehat j} \right| = \left( 1 \right).\left( 1 \right).\sin {90^ \circ } = 1$
The rule of right hand cork-screw, the direction of $\widehat i \times \widehat j$ is along the $z$ axis. Since $\widehat k$ is the unit vector along the $z$ axis, so $\widehat i \times \widehat j = \widehat k$
According to this rule, $\widehat i \times \widehat j = \widehat k$, $\widehat j \times \widehat k = \widehat i$ and, \[\widehat k \times \widehat i = \widehat j\]
Since, $\overrightarrow A \times \overrightarrow B = - \overrightarrow B \times \overrightarrow A $
Hence, $\widehat j \times \widehat i = - \widehat k$, $\widehat k \times \widehat j = - \widehat i$ and, \[\widehat i \times \widehat k = - \widehat j\]
After getting the axis of the vectors represent the vectors with unit vectors related to those axes.
Here in the problem cross product is needed, so do the cross product of the vectors find the direction of the product based on the sign.
Formula used:
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along $x,y,z$ axis respectively, then one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Complete step by step answer:
A vector $\overrightarrow A $ is along vertically upward and another vector $\overrightarrow B $ is along the north direction. If this is drawn in a plane of a paper it looks like:

$\overrightarrow A $is along the $z$ axis that is along the normal direction to the plane of the paper. $\overrightarrow B $ is along the $y$ axis that is along the north direction to the plane.
If $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively, then
\[\overrightarrow A = A\widehat k\]
And, \[\overrightarrow B = B\widehat j\]
We know, one of the relations between the unit vectors related to cross multiplications is :
$\widehat j \times \widehat k = \widehat i$
$ \Rightarrow \widehat k \times \widehat j = - \widehat i$
Hence, $\overrightarrow A \times \overrightarrow B = A\widehat k \times B\widehat j = AB( - \widehat i)$
$\therefore \overrightarrow A \times \overrightarrow B = - AB\widehat i$
Since the unit vector is $\widehat i$ with a negative sign, the resultant vector will be along the negative $x$ axis. From the figure it can be seen that the negative $x$ axis is directed towards the west direction.

Hence the correct option is (B).
Note: $\widehat i,\widehat j,\widehat k$ are the unit vectors along the positive $x,y,z$ axis respectively. Each of them has a value $1$ .
Since $\overrightarrow A \times \overrightarrow A = 0$ ;
Hence, $\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ .
Again, the value of $\widehat i \times \widehat j = \left| {\widehat i \times \widehat j} \right| = \left( 1 \right).\left( 1 \right).\sin {90^ \circ } = 1$
The rule of right hand cork-screw, the direction of $\widehat i \times \widehat j$ is along the $z$ axis. Since $\widehat k$ is the unit vector along the $z$ axis, so $\widehat i \times \widehat j = \widehat k$
According to this rule, $\widehat i \times \widehat j = \widehat k$, $\widehat j \times \widehat k = \widehat i$ and, \[\widehat k \times \widehat i = \widehat j\]
Since, $\overrightarrow A \times \overrightarrow B = - \overrightarrow B \times \overrightarrow A $
Hence, $\widehat j \times \widehat i = - \widehat k$, $\widehat k \times \widehat j = - \widehat i$ and, \[\widehat i \times \widehat k = - \widehat j\]
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26
