
A uniform rod (area of cross-section $A$, Young’s Modulus $Y$, Length $L$, mass $M$) is pulled on a smooth horizontal surface as shown. Calculate the elongation of the rod after a long time.

Answer
125.4k+ views
Hint: When a body is moved in a way that it experiences a force from both directions, it moves in a direction where the force is greater in magnitude. But due to the presence of other forces, stress is developed in the body and this causes it to either shrink or elongate by some amount, this change in the length can be calculated using the young’s modulus- which is the ratio of stress to strain.
Complete step by step solution:
Stress $(\sigma )$ is the number of internal forces produced as a reaction to an external force and maintains the shape of a body intact. Stress in a body is equal to the amount of force applied to the body from both ends. It is given by the formula-
$\sigma = \dfrac{F}{A}$
where $F$ is the amount of force that is applied and $A$ is the area over which this force acts.
Strain$(\varepsilon )$ is defined as the amount of deformation that occurs due to an external force and can be defined as the ratio of change in dimensions to the original dimension of the body. For a rod, this change is the change in length. Therefore,
$\varepsilon = \dfrac{{\Delta L}}{L}$
The Young’s modulus is defined as the ratio of the stress applied in a body to the strain produced due to it.
$Y = \dfrac{\sigma }{\varepsilon }$
$ \Rightarrow Y = \dfrac{{FL}}{{A\Delta L}}$
For the given rod, the acceleration is given by-
$a = \dfrac{F}{M}$
As the rod moves due to this acceleration, the amount of stress changes linearly, which is maximum at the point where force is applied and reduces as the distance increases.
Consider a small length $\;dx$ at a distance of $x$ from the free end of the rod. Then,
$F' = \dfrac{{Fx}}{L}$
The stress in this case is,
$\sigma = \dfrac{{F'}}{L}$
$ \Rightarrow \sigma = \dfrac{{Fx}}{L}$
Thus the elongation of the rod in this differential element is-
$d\Delta L = \varepsilon L$
$d\Delta L = \dfrac{{\varepsilon F}}{{A\sigma L}}xdx$
Integrating this equation,
$\int\limits_0^{\Delta L} {d\Delta L} = \int\limits_0^L {\dfrac{{\varepsilon F}}{{A\sigma L}}xdx} $
Pushing the constants out of the integration function,
$\int\limits_0^{\Delta L} {\Delta L} = \dfrac{F}{{YAL}}\int\limits_0^L {xdx} $
Upon evaluating the limits of the integration we get,
$\left[ {\Delta L} \right]_0^{\Delta L} = \dfrac{F}{{YAL}}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^L$
$\Delta L = \dfrac{{FL}}{{2YA}}$
The elongation produced in the rod is $\Delta L = \dfrac{{FL}}{{2YA}}$
Note: The rod gets elongated because the direction of the forces acting on it is tensile, if the forces were compressive the rod would have shrunk by the same amount. Also, due to an imbalance of forces on both sides, it would then move in the opposite direction.
Complete step by step solution:
Stress $(\sigma )$ is the number of internal forces produced as a reaction to an external force and maintains the shape of a body intact. Stress in a body is equal to the amount of force applied to the body from both ends. It is given by the formula-
$\sigma = \dfrac{F}{A}$
where $F$ is the amount of force that is applied and $A$ is the area over which this force acts.
Strain$(\varepsilon )$ is defined as the amount of deformation that occurs due to an external force and can be defined as the ratio of change in dimensions to the original dimension of the body. For a rod, this change is the change in length. Therefore,
$\varepsilon = \dfrac{{\Delta L}}{L}$
The Young’s modulus is defined as the ratio of the stress applied in a body to the strain produced due to it.
$Y = \dfrac{\sigma }{\varepsilon }$
$ \Rightarrow Y = \dfrac{{FL}}{{A\Delta L}}$
For the given rod, the acceleration is given by-
$a = \dfrac{F}{M}$
As the rod moves due to this acceleration, the amount of stress changes linearly, which is maximum at the point where force is applied and reduces as the distance increases.
Consider a small length $\;dx$ at a distance of $x$ from the free end of the rod. Then,
$F' = \dfrac{{Fx}}{L}$
The stress in this case is,
$\sigma = \dfrac{{F'}}{L}$
$ \Rightarrow \sigma = \dfrac{{Fx}}{L}$
Thus the elongation of the rod in this differential element is-
$d\Delta L = \varepsilon L$
$d\Delta L = \dfrac{{\varepsilon F}}{{A\sigma L}}xdx$
Integrating this equation,
$\int\limits_0^{\Delta L} {d\Delta L} = \int\limits_0^L {\dfrac{{\varepsilon F}}{{A\sigma L}}xdx} $
Pushing the constants out of the integration function,
$\int\limits_0^{\Delta L} {\Delta L} = \dfrac{F}{{YAL}}\int\limits_0^L {xdx} $
Upon evaluating the limits of the integration we get,
$\left[ {\Delta L} \right]_0^{\Delta L} = \dfrac{F}{{YAL}}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^L$
$\Delta L = \dfrac{{FL}}{{2YA}}$
The elongation produced in the rod is $\Delta L = \dfrac{{FL}}{{2YA}}$
Note: The rod gets elongated because the direction of the forces acting on it is tensile, if the forces were compressive the rod would have shrunk by the same amount. Also, due to an imbalance of forces on both sides, it would then move in the opposite direction.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
