
A uniform ring of mass $m$ and radius $R$ can rotate freely about an axis passing through the center $C$ perpendicular to the plane of paper. Half of the ring is positively charged and the other half of the ring is negatively charged. Uniform electric field ${E_a}$ is switched along –ve x-axis (axis are shown in figure).Find the angular velocity of the ring after rotation of 180 degrees. (Magnitude charge density $\lambda $ )

Answer
205.5k+ views
Hint: Use the formula of the shear stress given below and substitute the value of the parameters in it. Use the formula of the energy given below and substitute the calculated value of the shear stress and other parameters to find the value of the angular velocity.
Formula used:
(1) The formula of the shear stress is given by
$\tau = F \times 2d$
Where $\tau $ is the shear stress, $F$ is the force acting on the mass and $d$ is the distance of the force from the mass.
(2) The kinetic energy is given by
$E = \dfrac{1}{2}m{v^2}$
Where $E$ is the energy, $m$ is the mass of the object and $v$ is the velocity of it.
Complete step by step solution:
Let us interpret the diagram.
By using the formula of the shear stress,
$\tau = F \times 2d$
From the diagram it is clear that the distance is $\dfrac{{2R}}{\pi }$ , and the formula of the force is given by $F = \pi R\lambda $ . Substituting both of these values in the above formula, we get
$\Rightarrow$ $\tau = \pi R\lambda \times 2 \times \dfrac{{2R}}{\pi }$
By cancelling the similar terms and simplification of the above equation, we get
$\Rightarrow$ \[\tau = 4{R^2}\lambda {E_0}\]
Then using the formula of the energy,
$\Rightarrow$ $E = \dfrac{1}{2}m{\omega ^2}$
The shear stress is the kinetic energy produced and also the mass of the body is $R$ and hence substituting these in the above formula, we get
$\Rightarrow$ $4\pi \lambda {E_0} = \dfrac{1}{2}m{R^2}{\omega ^2}$
By cancelling the similar terms on both sides of the equation and further simplification of the above equation,
$\Rightarrow$ $\omega = \sqrt {\dfrac{{8\lambda {E_0}}}{m}} $
Note: Here the ring of the certain mass is rotated due to the presence of the half positive charge and half negatively charged. And hence the rotation motion takes place. That is the reason the kinetic energy formula is substituted with the angular velocity in place of the normal velocity of the mass.
Formula used:
(1) The formula of the shear stress is given by
$\tau = F \times 2d$
Where $\tau $ is the shear stress, $F$ is the force acting on the mass and $d$ is the distance of the force from the mass.
(2) The kinetic energy is given by
$E = \dfrac{1}{2}m{v^2}$
Where $E$ is the energy, $m$ is the mass of the object and $v$ is the velocity of it.
Complete step by step solution:
Let us interpret the diagram.
By using the formula of the shear stress,
$\tau = F \times 2d$
From the diagram it is clear that the distance is $\dfrac{{2R}}{\pi }$ , and the formula of the force is given by $F = \pi R\lambda $ . Substituting both of these values in the above formula, we get
$\Rightarrow$ $\tau = \pi R\lambda \times 2 \times \dfrac{{2R}}{\pi }$
By cancelling the similar terms and simplification of the above equation, we get
$\Rightarrow$ \[\tau = 4{R^2}\lambda {E_0}\]
Then using the formula of the energy,
$\Rightarrow$ $E = \dfrac{1}{2}m{\omega ^2}$
The shear stress is the kinetic energy produced and also the mass of the body is $R$ and hence substituting these in the above formula, we get
$\Rightarrow$ $4\pi \lambda {E_0} = \dfrac{1}{2}m{R^2}{\omega ^2}$
By cancelling the similar terms on both sides of the equation and further simplification of the above equation,
$\Rightarrow$ $\omega = \sqrt {\dfrac{{8\lambda {E_0}}}{m}} $
Note: Here the ring of the certain mass is rotated due to the presence of the half positive charge and half negatively charged. And hence the rotation motion takes place. That is the reason the kinetic energy formula is substituted with the angular velocity in place of the normal velocity of the mass.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Hybridisation in Chemistry – Concept, Types & Applications

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

