Answer
Verified
97.8k+ views
Hint: First of all, we will calculate the area of triangle AOB. We will use the concept of rate of change of magnetic flux as emf or induced voltage in the cylinder. We will use $emf = A\dfrac{{dB}}{{dt}}$ formula to calculate the emf produced at both the ends of the rod.
Complete step by step answer:
Magnetic field of induction B:
It is defined as the number of magnetic field lines passing a unit surface area normally.
Emf: Rate of change of magnetic flux is known as emf. It is deNoted by $\varphi $. It is also known as voltage.
Mathematically, emf is an integral multiple of magnetic flux crossing area element dA.
${\varphi _B} = \iint\limits_A {B.dA}$
Differentiating on both the sides, we get
$emf = \dfrac{{d\varphi }}{{dt}}$$ = A\dfrac{{dB}}{{dt}}$
Magnetic field is confined in a cylinder of radius R.
Length of rod = AB = 2l
Rate of change of magnetic field $ = \dfrac{{dB}}{{dt}}$
According to figure;
Area of triangle AOB = A
Using Pythagorean Theorem,
$OC = \sqrt {O{B^2} - C{B^2}} $
OB = radius of circle = R
CB = half of length of rod AB = l
$OC = \sqrt {{R^2} - {l^2}} $
Area of a triangle $ = \dfrac{1}{2} \times base \times height$
$ = \dfrac{1}{2} \times OC \times AB$
$ = \dfrac{1}{2}2l\sqrt {{R^2} - {l^2}} $
$ = l\sqrt {{R^2} - {l^2}} $
Emf induced at the midpoint of rod AB is
$\varepsilon = \dfrac{{dB}}{{dt}}l\sqrt {{R^2} - {l^2}} $
Therefore, option A is correct.
Note:
If Pythagorean theorems have been used then $\sqrt {{R^2} + {l^2}} $ will not come in the solution. Option B and D will be wrong. If the length of rod is taken as l instead of $\dfrac{l}{2}$ then flux calculated will not be at mid-point. That’s why option A is the correct solution.
Complete step by step answer:
Magnetic field of induction B:
It is defined as the number of magnetic field lines passing a unit surface area normally.
Emf: Rate of change of magnetic flux is known as emf. It is deNoted by $\varphi $. It is also known as voltage.
Mathematically, emf is an integral multiple of magnetic flux crossing area element dA.
${\varphi _B} = \iint\limits_A {B.dA}$
Differentiating on both the sides, we get
$emf = \dfrac{{d\varphi }}{{dt}}$$ = A\dfrac{{dB}}{{dt}}$
Magnetic field is confined in a cylinder of radius R.
Length of rod = AB = 2l
Rate of change of magnetic field $ = \dfrac{{dB}}{{dt}}$
According to figure;
Area of triangle AOB = A
Using Pythagorean Theorem,
$OC = \sqrt {O{B^2} - C{B^2}} $
OB = radius of circle = R
CB = half of length of rod AB = l
$OC = \sqrt {{R^2} - {l^2}} $
Area of a triangle $ = \dfrac{1}{2} \times base \times height$
$ = \dfrac{1}{2} \times OC \times AB$
$ = \dfrac{1}{2}2l\sqrt {{R^2} - {l^2}} $
$ = l\sqrt {{R^2} - {l^2}} $
Emf induced at the midpoint of rod AB is
$\varepsilon = \dfrac{{dB}}{{dt}}l\sqrt {{R^2} - {l^2}} $
Therefore, option A is correct.
Note:
If Pythagorean theorems have been used then $\sqrt {{R^2} + {l^2}} $ will not come in the solution. Option B and D will be wrong. If the length of rod is taken as l instead of $\dfrac{l}{2}$ then flux calculated will not be at mid-point. That’s why option A is the correct solution.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
The focal length of a thin biconvex lens is 20cm When class 12 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main