A uniform heavy rod of length L and area of cross section A is hanging from a fixed support. If young’s modulus of the rod is is Y, then the increase in the length of the rod is ( $\rho $ is a density of the material of the rod)
(A) $\dfrac{{{L^2}Y}}{{2\rho g}}$
(B) $\dfrac{{{L^2}\rho g}}{{2Y}}$
(C) $\dfrac{{{L^2}g}}{{2\rho Y}}$
(D) $\dfrac{{{L^2}g}}{{3Y\rho }}$
Answer
Verified
117.9k+ views
Hint: We will calculate strain using $Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length}}$ formula and stress using $Stress = \dfrac{{Force}}{{Area}}$ formula. Then using Young's modulus formula which is stress to strain ratio we will calculate elongation in length of the rod.
Complete step by step answer:
Let us assume the length of rod is L, area of cross section is A and young’s modulus is Y.
Young’s modulus:
It is defined as a tendency of a material to withstand changes made in length when it undergoes compression or expansion.
Change in length of rod $ = \Delta L$
Force is acting on the rod in terms of its weight. Elongation takes place when force acts on rod.
$Y = \dfrac{{Stress}}{{Strain}}$ … (1)
Stress is defined as force per unit area.
$Stress = \dfrac{{Force}}{{Area}}$
A body of mass ‘m’ is accelerated by ‘a’, object is said to exert a force ‘F’;
$Force = mass\, \times acceleration$
$ \Rightarrow F = mg$ … (2)
Strain is defined as the ratio of change in length to its original length.
$Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length/2}} = \dfrac{{\Delta L}}{{L/2}}$ … (3)
Centre of gravity:
Whole weight of an object is concentrated at the centre.
$Y = \dfrac{{mgL}}{{2A\Delta L}}$
$\Delta L = \dfrac{{mgL}}{{2AY}}$ … (4)
$Density = \dfrac{{Mass}}{{Volume}}$
Volume of rod =$length \times area$
$\rho = \dfrac{m}{V} = \dfrac{m}{{LA}}$ … (5)
Using equation (4),
$\Delta L = \dfrac{{mgL}}{{2AY}} \times \dfrac{L}{L}$
Using equation (5),
$\Delta L = \dfrac{{mgL}}{{LA \times 2Y}}$
$ \Rightarrow \Delta L = \dfrac{{\rho \,g\,{L^2}}}{{2Y}}$
Thus, the length of the rod is increased by $\dfrac{{{L^2}\rho g}}{{2Y}}$ .
Therefore, option B is correct.
Note: We can solve this question by using Dimensional Analysis in comparing options as well.
The acceleration due to gravity, ‘g’ cannot be taken in the denominator as in Young's modulus formula, stress is taken in the numerator. So, option A is not possible.
Secondly, the center of mass lies at mid-point of the rod instead of one third part of it. So, option D is wrong.
As per formula $\rho $ lies in the numerator. Option B is satisfying this condition. Therefore, it is the correct option.
Complete step by step answer:
Let us assume the length of rod is L, area of cross section is A and young’s modulus is Y.
Young’s modulus:
It is defined as a tendency of a material to withstand changes made in length when it undergoes compression or expansion.
Change in length of rod $ = \Delta L$
Force is acting on the rod in terms of its weight. Elongation takes place when force acts on rod.
$Y = \dfrac{{Stress}}{{Strain}}$ … (1)
Stress is defined as force per unit area.
$Stress = \dfrac{{Force}}{{Area}}$
A body of mass ‘m’ is accelerated by ‘a’, object is said to exert a force ‘F’;
$Force = mass\, \times acceleration$
$ \Rightarrow F = mg$ … (2)
Strain is defined as the ratio of change in length to its original length.
$Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length/2}} = \dfrac{{\Delta L}}{{L/2}}$ … (3)
Centre of gravity:
Whole weight of an object is concentrated at the centre.
$Y = \dfrac{{mgL}}{{2A\Delta L}}$
$\Delta L = \dfrac{{mgL}}{{2AY}}$ … (4)
$Density = \dfrac{{Mass}}{{Volume}}$
Volume of rod =$length \times area$
$\rho = \dfrac{m}{V} = \dfrac{m}{{LA}}$ … (5)
Using equation (4),
$\Delta L = \dfrac{{mgL}}{{2AY}} \times \dfrac{L}{L}$
Using equation (5),
$\Delta L = \dfrac{{mgL}}{{LA \times 2Y}}$
$ \Rightarrow \Delta L = \dfrac{{\rho \,g\,{L^2}}}{{2Y}}$
Thus, the length of the rod is increased by $\dfrac{{{L^2}\rho g}}{{2Y}}$ .
Therefore, option B is correct.
Note: We can solve this question by using Dimensional Analysis in comparing options as well.
The acceleration due to gravity, ‘g’ cannot be taken in the denominator as in Young's modulus formula, stress is taken in the numerator. So, option A is not possible.
Secondly, the center of mass lies at mid-point of the rod instead of one third part of it. So, option D is wrong.
As per formula $\rho $ lies in the numerator. Option B is satisfying this condition. Therefore, it is the correct option.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Uniform Acceleration - Definition, Equation, Examples, and FAQs
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane