A T.V transmission tower has a height of 140m and the height of the receiving antenna is 40m. What is the maximum distance upto which signal can be broadcasted from this LOS (line of sight) mode? (Given radius of earth = $6.4 \times {10^6}m$).
$
(a){\text{ 80Km}} \\
(b){\text{ 48Km}} \\
(c){\text{ 40Km}} \\
(d){\text{ 65Km}} \\
$
Answer
Verified
118.5k+ views
Hint: In this question use the direct formula that the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is ${D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $, where ${H_T}$ is the height of the transmission antenna and ${H_R}$is the height of the receiving antenna. Direct substitution of values into the formula will help getting the right answer for this problem statement.
Complete step-by-step solution -
Given data:
Height of the transmission tower = 140 m
Let ${H_T} = 140$ m.
And the height of the receiving antenna = 40 m
Let ${H_R} = 40$ m.
Now the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is given by the formula which is given as
$ \Rightarrow {D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $
Where r = radius of the earth = 6.4 $ \times {10^6}$m.
Now simply substitute the values in the above equation we have,
$ \Rightarrow {D_{\max }} = \sqrt {2 \times 6.4 \times {{10}^6} \times 140} + \sqrt {2 \times 6.4 \times {{10}^6} \times 40} $
Now simplify this we have, as $\sqrt {{{10}^6}} = 1000$
$ \Rightarrow {D_{\max }} = 1000\sqrt {2 \times 64 \times 14} + 1000\sqrt {2 \times 64 \times 4} $
Now again simplify this we have,
As square root of 64 is 8 and square root of 4 is 2 so we have,
$ \Rightarrow {D_{\max }} = 1000\left( {16\sqrt 7 + 16\sqrt 2 } \right)$
$ \Rightarrow {D_{\max }} = 16000\left( {\sqrt 7 + \sqrt 2 } \right)$
Now as we know that $\sqrt 7 = 2.645$ and $\sqrt 2 = 1.414$ so use this value in above equation we have,
$ \Rightarrow {D_{\max }} = 16000\left( {2.645 + 1.414} \right) = 16000\left( {4.06} \right) = 64959.4$meter.
$ \Rightarrow {D_{\max }} \simeq 65$Km, as 1Km = 1000 m.
So the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is 65 km.
So this is the required answer.
Hence option (D) is the correct answer.
Note – The key point here was that the broadcast was made along the line of sight that is line of sight refers to a straight line along which any observer has unobstructed vision. Here the waves from the transmission antenna are travelling directly to the receiving end and are not subjected to any reflections due to the obstacles present in between the path of transmission and receiving antenna.
Complete step-by-step solution -
Given data:
Height of the transmission tower = 140 m
Let ${H_T} = 140$ m.
And the height of the receiving antenna = 40 m
Let ${H_R} = 40$ m.
Now the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is given by the formula which is given as
$ \Rightarrow {D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $
Where r = radius of the earth = 6.4 $ \times {10^6}$m.
Now simply substitute the values in the above equation we have,
$ \Rightarrow {D_{\max }} = \sqrt {2 \times 6.4 \times {{10}^6} \times 140} + \sqrt {2 \times 6.4 \times {{10}^6} \times 40} $
Now simplify this we have, as $\sqrt {{{10}^6}} = 1000$
$ \Rightarrow {D_{\max }} = 1000\sqrt {2 \times 64 \times 14} + 1000\sqrt {2 \times 64 \times 4} $
Now again simplify this we have,
As square root of 64 is 8 and square root of 4 is 2 so we have,
$ \Rightarrow {D_{\max }} = 1000\left( {16\sqrt 7 + 16\sqrt 2 } \right)$
$ \Rightarrow {D_{\max }} = 16000\left( {\sqrt 7 + \sqrt 2 } \right)$
Now as we know that $\sqrt 7 = 2.645$ and $\sqrt 2 = 1.414$ so use this value in above equation we have,
$ \Rightarrow {D_{\max }} = 16000\left( {2.645 + 1.414} \right) = 16000\left( {4.06} \right) = 64959.4$meter.
$ \Rightarrow {D_{\max }} \simeq 65$Km, as 1Km = 1000 m.
So the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is 65 km.
So this is the required answer.
Hence option (D) is the correct answer.
Note – The key point here was that the broadcast was made along the line of sight that is line of sight refers to a straight line along which any observer has unobstructed vision. Here the waves from the transmission antenna are travelling directly to the receiving end and are not subjected to any reflections due to the obstacles present in between the path of transmission and receiving antenna.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Algebraic Formula
Difference Between Constants and Variables: JEE Main 2024
Arithmetic Mean Formula - Explanation, Calculation, Solved Examples, and FAQs
Difference Between Square and Rhombuss: JEE Main 2024
Height and Distance - Definition, Pythagorean Theorem, Formula, Calculation, Methods & Solved Examples
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main