
A T.V transmission tower has a height of 140m and the height of the receiving antenna is 40m. What is the maximum distance upto which signal can be broadcasted from this LOS (line of sight) mode? (Given radius of earth = $6.4 \times {10^6}m$).
$
(a){\text{ 80Km}} \\
(b){\text{ 48Km}} \\
(c){\text{ 40Km}} \\
(d){\text{ 65Km}} \\
$
Answer
205.8k+ views
Hint: In this question use the direct formula that the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is ${D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $, where ${H_T}$ is the height of the transmission antenna and ${H_R}$is the height of the receiving antenna. Direct substitution of values into the formula will help getting the right answer for this problem statement.
Complete step-by-step solution -

Given data:
Height of the transmission tower = 140 m
Let ${H_T} = 140$ m.
And the height of the receiving antenna = 40 m
Let ${H_R} = 40$ m.
Now the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is given by the formula which is given as
$ \Rightarrow {D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $
Where r = radius of the earth = 6.4 $ \times {10^6}$m.
Now simply substitute the values in the above equation we have,
$ \Rightarrow {D_{\max }} = \sqrt {2 \times 6.4 \times {{10}^6} \times 140} + \sqrt {2 \times 6.4 \times {{10}^6} \times 40} $
Now simplify this we have, as $\sqrt {{{10}^6}} = 1000$
$ \Rightarrow {D_{\max }} = 1000\sqrt {2 \times 64 \times 14} + 1000\sqrt {2 \times 64 \times 4} $
Now again simplify this we have,
As square root of 64 is 8 and square root of 4 is 2 so we have,
$ \Rightarrow {D_{\max }} = 1000\left( {16\sqrt 7 + 16\sqrt 2 } \right)$
$ \Rightarrow {D_{\max }} = 16000\left( {\sqrt 7 + \sqrt 2 } \right)$
Now as we know that $\sqrt 7 = 2.645$ and $\sqrt 2 = 1.414$ so use this value in above equation we have,
$ \Rightarrow {D_{\max }} = 16000\left( {2.645 + 1.414} \right) = 16000\left( {4.06} \right) = 64959.4$meter.
$ \Rightarrow {D_{\max }} \simeq 65$Km, as 1Km = 1000 m.
So the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is 65 km.
So this is the required answer.
Hence option (D) is the correct answer.
Note – The key point here was that the broadcast was made along the line of sight that is line of sight refers to a straight line along which any observer has unobstructed vision. Here the waves from the transmission antenna are travelling directly to the receiving end and are not subjected to any reflections due to the obstacles present in between the path of transmission and receiving antenna.
Complete step-by-step solution -

Given data:
Height of the transmission tower = 140 m
Let ${H_T} = 140$ m.
And the height of the receiving antenna = 40 m
Let ${H_R} = 40$ m.
Now the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is given by the formula which is given as
$ \Rightarrow {D_{\max }} = \sqrt {2R{H_T}} + \sqrt {2R{H_R}} $
Where r = radius of the earth = 6.4 $ \times {10^6}$m.
Now simply substitute the values in the above equation we have,
$ \Rightarrow {D_{\max }} = \sqrt {2 \times 6.4 \times {{10}^6} \times 140} + \sqrt {2 \times 6.4 \times {{10}^6} \times 40} $
Now simplify this we have, as $\sqrt {{{10}^6}} = 1000$
$ \Rightarrow {D_{\max }} = 1000\sqrt {2 \times 64 \times 14} + 1000\sqrt {2 \times 64 \times 4} $
Now again simplify this we have,
As square root of 64 is 8 and square root of 4 is 2 so we have,
$ \Rightarrow {D_{\max }} = 1000\left( {16\sqrt 7 + 16\sqrt 2 } \right)$
$ \Rightarrow {D_{\max }} = 16000\left( {\sqrt 7 + \sqrt 2 } \right)$
Now as we know that $\sqrt 7 = 2.645$ and $\sqrt 2 = 1.414$ so use this value in above equation we have,
$ \Rightarrow {D_{\max }} = 16000\left( {2.645 + 1.414} \right) = 16000\left( {4.06} \right) = 64959.4$meter.
$ \Rightarrow {D_{\max }} \simeq 65$Km, as 1Km = 1000 m.
So the maximum distance up to which the signals can be broad casted from this tower in LOS (line of sight) mode is 65 km.
So this is the required answer.
Hence option (D) is the correct answer.
Note – The key point here was that the broadcast was made along the line of sight that is line of sight refers to a straight line along which any observer has unobstructed vision. Here the waves from the transmission antenna are travelling directly to the receiving end and are not subjected to any reflections due to the obstacles present in between the path of transmission and receiving antenna.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Wheatstone Bridge Explained: Principle, Working, and Uses

Charging and Discharging of Capacitor Explained

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

