Answer
Verified
86.7k+ views
Hint: Use the formula of the radius of the curved path, substitute the formula of the magnetic field in that. Rearrange the obtained equation and substitute the value of the radius in it to find the value of the velocity of the particle that does not strike the solenoid.
Formula used:
(1) The radius of the curved path is given by
$r = \dfrac{{mv}}{{Bq}}$
Where $r$ is the radius of the circular path, $m$ is the mass of the particle, $v$ is the velocity of the particle, $B$ is the magnetic field produced by the solenoid and $q$ is the charge of the particle.
(2) The magnetic field of the solenoid is given by
$B = {\mu _0}ni$
Where ${\mu _0}$ is the magnetic permeability of free space, $n$ is the number of turns per unit length of the solenoid and $i$ is the current through the solenoid.
Complete step by step solution:
It is given that the
Number of turns in the solenoid is $n$
Radius of the solenoid is $r$
The current of the solenoid is $i$
The particle that travels perpendicular to the axis possesses the charge $q$ and mass $m$.
Using the formula of the radius of the curved path,
$r = \dfrac{{mv}}{{Bq}}$
Substituting the formula of the magnetic field in the above step, we get
$\Rightarrow r = \dfrac{{mv}}{{{\mu _0}niq}}$
Rearranging the above formula, to obtain the value of the velocity of the particle
$\Rightarrow v = \dfrac{{{\mu _0}niqr}}{m}$
The radius of the curved path will be $\dfrac{r}{2}$ to obtain the speed that the particle does not strike the solenoid
$\Rightarrow v = \dfrac{{{\mu _0}niqr}}{{2m}}$
Hence the maximum velocity of the particle that does not strike the solenoid is $\dfrac{{{\mu _0}niqr}}{{2m}}$ .
Thus the option (A) is correct.
Note: In this problem, the magnetic field is produced due to the passing of the current through it. The radius of the circle is taken as its half, this is because if the radius is taken as full, the particle may strike the solenoid. Hence the radius of the circle taken as $\dfrac{r}{2}$.
Formula used:
(1) The radius of the curved path is given by
$r = \dfrac{{mv}}{{Bq}}$
Where $r$ is the radius of the circular path, $m$ is the mass of the particle, $v$ is the velocity of the particle, $B$ is the magnetic field produced by the solenoid and $q$ is the charge of the particle.
(2) The magnetic field of the solenoid is given by
$B = {\mu _0}ni$
Where ${\mu _0}$ is the magnetic permeability of free space, $n$ is the number of turns per unit length of the solenoid and $i$ is the current through the solenoid.
Complete step by step solution:
It is given that the
Number of turns in the solenoid is $n$
Radius of the solenoid is $r$
The current of the solenoid is $i$
The particle that travels perpendicular to the axis possesses the charge $q$ and mass $m$.
Using the formula of the radius of the curved path,
$r = \dfrac{{mv}}{{Bq}}$
Substituting the formula of the magnetic field in the above step, we get
$\Rightarrow r = \dfrac{{mv}}{{{\mu _0}niq}}$
Rearranging the above formula, to obtain the value of the velocity of the particle
$\Rightarrow v = \dfrac{{{\mu _0}niqr}}{m}$
The radius of the curved path will be $\dfrac{r}{2}$ to obtain the speed that the particle does not strike the solenoid
$\Rightarrow v = \dfrac{{{\mu _0}niqr}}{{2m}}$
Hence the maximum velocity of the particle that does not strike the solenoid is $\dfrac{{{\mu _0}niqr}}{{2m}}$ .
Thus the option (A) is correct.
Note: In this problem, the magnetic field is produced due to the passing of the current through it. The radius of the circle is taken as its half, this is because if the radius is taken as full, the particle may strike the solenoid. Hence the radius of the circle taken as $\dfrac{r}{2}$.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The thickness of the depletion layer is approximately class 11 physics JEE_Main