
A thin straight strip of length \[5cm\] and magnetic moment \[0.5A{m^2}\] was bent such that there is a gap of \[1cm\] at its end. Then the magnetic moment will be (nearly):
A) \[0.1A{m^2}\]
B) \[0.2A{m^2}\]
C) \[0.05A{m^2}\]
D) \[0.25A{m^2}\]
Answer
221.4k+ views
Hint: Since the same strip is bent, current flowing through the strip and after the strip is bent, is the same. Using the formula of magnetic moment and considering the current flowing to be constant, the required magnetic moment can be obtained.
Complete step by step answer:
Magnetic Moment through a current loop is:
(I) directly proportional to the current flowing through the loop
(ii) Directly proportional to the area of cross-section (A) of the loop.
The formula for Magnetic Moment can be formulated as:
\[\vec M = I\vec A\]
\[\vec M = \]Magnetic Moment
\[I = \]Current through the loop
\[\vec A = \] Area of the loop
Let us consider the following:
\[{L_1} = \] Length of the strip
\[{L_2} = \] Length of the ends
\[{M_1} = \] Magnetic moment of the strip
\[{M_2} = \] Required magnetic moment.
Since the current flowing through the coils is constant:
\[\dfrac{{{M_1}}}{{{L_1}}} = \dfrac{{{M_2}}}{{{L_2}}}\]
Putting the given values:
\[\dfrac{{0.5}}{5} = \dfrac{{{M_2}}}{1}\]
Thus we obtain:
\[{M_2} = 0.1A{m^2}\]
This is our required solution.
Option (A) is correct.
Note: Both \[\vec M\] and \[\vec A\] are vector quantities having both magnitude and direction. The direction of \[\vec A\] and as a result \[\vec M\] is perpendicular to the plane of the coil. The direction of \[\vec M\] and \[\vec A\] can be obtained using the right hand thumb rule. The fingers curl such that it represents the direction of current and the thumb points to the direction of magnetic moment and area vector.
Complete step by step answer:
Magnetic Moment through a current loop is:
(I) directly proportional to the current flowing through the loop
(ii) Directly proportional to the area of cross-section (A) of the loop.
The formula for Magnetic Moment can be formulated as:
\[\vec M = I\vec A\]
\[\vec M = \]Magnetic Moment
\[I = \]Current through the loop
\[\vec A = \] Area of the loop
Let us consider the following:
\[{L_1} = \] Length of the strip
\[{L_2} = \] Length of the ends
\[{M_1} = \] Magnetic moment of the strip
\[{M_2} = \] Required magnetic moment.
Since the current flowing through the coils is constant:
\[\dfrac{{{M_1}}}{{{L_1}}} = \dfrac{{{M_2}}}{{{L_2}}}\]
Putting the given values:
\[\dfrac{{0.5}}{5} = \dfrac{{{M_2}}}{1}\]
Thus we obtain:
\[{M_2} = 0.1A{m^2}\]
This is our required solution.
Option (A) is correct.
Note: Both \[\vec M\] and \[\vec A\] are vector quantities having both magnitude and direction. The direction of \[\vec A\] and as a result \[\vec M\] is perpendicular to the plane of the coil. The direction of \[\vec M\] and \[\vec A\] can be obtained using the right hand thumb rule. The fingers curl such that it represents the direction of current and the thumb points to the direction of magnetic moment and area vector.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

