![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A thin glass plate of thickness is $\dfrac{{2500}}{3}\lambda $ ( $\lambda $ is wavelength of light used) and refractive index $\mu = 1.5$ is inserted between one of the slits and the screen in Young’s double slit experiment. At a point on the screen equidistant from the slits, the ratio of the intensities before and after the introduction of the glass plate is:
A) $2:1$
B) $1:4$
C) $4:1$
D) $4:3$
Answer
119.1k+ views
Hint: Calculate the path difference due to insertion of the thin glass plate. Due to this path difference, there will be a phase difference. Calculate that path difference. Now, intensity can be calculated using the formula of resultant intensities.
Complete step by step solution:
We know that there will be path difference due to the insertion of the glass plate and this path difference will also lead to phase difference.
Now, the path difference when the thin glass plate is inserted is given as $\Delta p$ ,
$\Delta p = (\mu - 1)t$.....................equation 1
Here $t$ is the thickness of the glass plate
$\mu $ is the refractive index of the glass
Now, the phase difference when the thin glass plate is inserted $$\Delta \phi $$ is given as:
$$\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta p$$
$$\Delta \phi = \dfrac{{2\pi }}{\lambda }\left( {\mu - 1} \right)t$$.............equation 2
Where $\lambda $ is wavelength of light used
The intensity at the centre $${I_c}$$ after the insertion of the glass plate will be given as:
$${I_c} = {I_s} + {I_s} + 2\sqrt {{I_s}^2} \cos \Delta \phi $$
Here, $${I_s}$$ is the intensity of light from each slit
Solving this equation, we get
$${I_c} = 2{I_s}(1 + \cos \Delta \phi )$$
But from trigonometric identities, we know that $$1 + \cos \theta = 2{\cos ^2}\left( {\dfrac{\theta }{2}} \right)$$
$$ \Rightarrow {I_c} = 2{I_s}(2{\cos ^2}\left( {\dfrac{{\Delta \phi }}{2}} \right))$$
$$ \Rightarrow {I_c} = 4{I_s}({\cos ^2}\left( {\dfrac{{\Delta \phi }}{2}} \right))$$
Before the glass plate was inserted, the phase difference was zero and hence the intensity was
$${I_c} = 4{I_s}({\cos ^2}{0^0})$$
$$ \Rightarrow {I_c} = 4{I_s} = {I_0}$$............equation 3
Substituting the value of phase difference, we get
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {\dfrac{{2\pi }}{\lambda }\left( {\mu - 1} \right)t} \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {\dfrac{{2\pi }}{\lambda }\left( {1.5 - 1} \right)\dfrac{{2500}}{3}\lambda } \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {2\pi \left( {\dfrac{1}{2}} \right)\dfrac{{2500}}{3}} \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {2500\dfrac{\pi }{3}} \right)$$
But
$${\cos ^2}\left( {2500\dfrac{\pi }{3}} \right) = \dfrac{1}{4}$$
$$ \Rightarrow {I_c} = 4{I_s} \times \dfrac{1}{4}$$
$$ \Rightarrow {I_c} = {I_s}$$
Comparing this with equation $3$ , we have
$$\dfrac{{{I_0}}}{{{I_C}}} = \dfrac{4}{1}$$
Therefore, the ratio of the intensities before and after the introduction of the glass plate is $$4:1$$
Thus, option C is the correct option.
Note: In Young’s double slit experiment, a pattern of bright and dark fringes is observed. Remember when there is no glass plate, the phase difference and the path difference will be zero. Also remember that due to insertion of a thin glass plate, the intensity decreased for this problem.
Complete step by step solution:
We know that there will be path difference due to the insertion of the glass plate and this path difference will also lead to phase difference.
Now, the path difference when the thin glass plate is inserted is given as $\Delta p$ ,
$\Delta p = (\mu - 1)t$.....................equation 1
Here $t$ is the thickness of the glass plate
$\mu $ is the refractive index of the glass
Now, the phase difference when the thin glass plate is inserted $$\Delta \phi $$ is given as:
$$\Delta \phi = \dfrac{{2\pi }}{\lambda }\Delta p$$
$$\Delta \phi = \dfrac{{2\pi }}{\lambda }\left( {\mu - 1} \right)t$$.............equation 2
Where $\lambda $ is wavelength of light used
The intensity at the centre $${I_c}$$ after the insertion of the glass plate will be given as:
$${I_c} = {I_s} + {I_s} + 2\sqrt {{I_s}^2} \cos \Delta \phi $$
Here, $${I_s}$$ is the intensity of light from each slit
Solving this equation, we get
$${I_c} = 2{I_s}(1 + \cos \Delta \phi )$$
But from trigonometric identities, we know that $$1 + \cos \theta = 2{\cos ^2}\left( {\dfrac{\theta }{2}} \right)$$
$$ \Rightarrow {I_c} = 2{I_s}(2{\cos ^2}\left( {\dfrac{{\Delta \phi }}{2}} \right))$$
$$ \Rightarrow {I_c} = 4{I_s}({\cos ^2}\left( {\dfrac{{\Delta \phi }}{2}} \right))$$
Before the glass plate was inserted, the phase difference was zero and hence the intensity was
$${I_c} = 4{I_s}({\cos ^2}{0^0})$$
$$ \Rightarrow {I_c} = 4{I_s} = {I_0}$$............equation 3
Substituting the value of phase difference, we get
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {\dfrac{{2\pi }}{\lambda }\left( {\mu - 1} \right)t} \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {\dfrac{{2\pi }}{\lambda }\left( {1.5 - 1} \right)\dfrac{{2500}}{3}\lambda } \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {2\pi \left( {\dfrac{1}{2}} \right)\dfrac{{2500}}{3}} \right)$$
$$ \Rightarrow {I_c} = 4{I_s}{\cos ^2}\left( {2500\dfrac{\pi }{3}} \right)$$
But
$${\cos ^2}\left( {2500\dfrac{\pi }{3}} \right) = \dfrac{1}{4}$$
$$ \Rightarrow {I_c} = 4{I_s} \times \dfrac{1}{4}$$
$$ \Rightarrow {I_c} = {I_s}$$
Comparing this with equation $3$ , we have
$$\dfrac{{{I_0}}}{{{I_C}}} = \dfrac{4}{1}$$
Therefore, the ratio of the intensities before and after the introduction of the glass plate is $$4:1$$
Thus, option C is the correct option.
Note: In Young’s double slit experiment, a pattern of bright and dark fringes is observed. Remember when there is no glass plate, the phase difference and the path difference will be zero. Also remember that due to insertion of a thin glass plate, the intensity decreased for this problem.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Chemistry Question Paper with Answer Keys and Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Charging and Discharging of Capacitor
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Chemistry Exam Pattern 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Degree of Dissociation and Its Formula With Solved Example for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)