Answer

Verified

54.6k+ views

**Hint:**In order to solve this question you have to know all the concepts related to lenses and apply the lens maker formula for both the liquids giving in the question. Then from that lens maker formula find the focal length for both the liquids and then compare.

**Formula used:**

The lens maker formula is given by,

$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$

Where, $f$ is the focal length

$\mu $ is the refractive index

${R_1}$ and ${R_2}$ are the radius of aperture.

**Complete step by step solution:**

According to the lens maker formula

$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$

Where, $f$ is the focal length

$\mu $ is the refractive index

${R_1}$ and ${R_2}$ are the radius of aperture.

Now taking the ratio of focal length in first liquid to the focal length in air

$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$

On putting the values of refractive indices given, we have

$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$

On further solving, we get

$ \Rightarrow {f_1} = 4f$

Now taking the ratio of focal length in second liquid to the focal length in air, we have

$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$

On putting the values of refractive indices given, we have

$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$

On the above equation, we have

$ \Rightarrow {f_2} < 0$

Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative

**Therefore, the correct option is (D).**

**Note:**The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.

Recently Updated Pages

Why do we see inverted images in a spoon class 10 physics JEE_Main

A farsighted man who has lost his spectacles reads class 10 physics JEE_Main

State whether true or false The outermost layer of class 10 physics JEE_Main

Which is not the correct advantage of parallel combination class 10 physics JEE_Main

State two factors upon which the heat absorbed by a class 10 physics JEE_Main

What will be the halflife of a first order reaction class 12 chemistry JEE_Main

Other Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

when an object Is placed at a distance of 60 cm from class 12 physics JEE_Main

The resultant of vec A and vec B is perpendicular to class 11 physics JEE_Main