Answer
Verified
85.5k+ views
Hint: In order to solve this question you have to know all the concepts related to lenses and apply the lens maker formula for both the liquids giving in the question. Then from that lens maker formula find the focal length for both the liquids and then compare.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main