A thin convex lens made from crown glass $\left( {\mu = \dfrac{3}{2}} \right)$ has focal length $f$. When it is measured in two different liquids having refractive indices $\dfrac{4}{3}$ and $\dfrac{5}{3}$, it has the focal lengths ${f_1}$ and ${f_2}$ respectively. The correct relation between the focal lengths is:
A) ${f_2} > f$ and ${f_1}$ becomes negative
B) ${f_1}$ and ${f_2}$ become negative
C) ${f_1} = {f_2} < f$
D) ${f_1} > f$ and ${f_2}$ becomes negative
Answer
Verified
117.9k+ views
Hint: In order to solve this question you have to know all the concepts related to lenses and apply the lens maker formula for both the liquids giving in the question. Then from that lens maker formula find the focal length for both the liquids and then compare.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Formula used:
The lens maker formula is given by,
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Complete step by step solution:
According to the lens maker formula
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $f$ is the focal length
$\mu $ is the refractive index
${R_1}$ and ${R_2}$ are the radius of aperture.
Now taking the ratio of focal length in first liquid to the focal length in air
$\dfrac{{{f_1}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_1}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{4}{3}}} - 1} \right)}}$
On further solving, we get
$ \Rightarrow {f_1} = 4f$
Now taking the ratio of focal length in second liquid to the focal length in air, we have
$\dfrac{{{f_2}}}{f} = \dfrac{{(\mu - 1)}}{{\left( {\dfrac{\mu }{{{\mu _m}}} - 1} \right)}}$
On putting the values of refractive indices given, we have
$ \Rightarrow \dfrac{{{f_2}}}{f} = \dfrac{{\left( {\dfrac{3}{2} - 1} \right)}}{{\left( {\dfrac{{\dfrac{3}{2}}}{{\dfrac{5}{3}}} - 1} \right)}} = - 5$
On the above equation, we have
$ \Rightarrow {f_2} < 0$
Hence, from the above solution we conclude that ${f_1} > f$ and ${f_2}$ becomes negative
Therefore, the correct option is (D).
Note: The focal length of the lens depends upon refractive index of lens with respect to the medium. The focal length of a lens is very much affected when immersed in water, after immersing the lens in the water, the focal length of the lens increases. The focal length of a lens is defined mainly by two properties of a lens that is the material's index of refraction and the curvature of the lens' surfaces.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main