Answer

Verified

35.1k+ views

**Hint:**Magnetic moment of a current carrying wire can be calculated as the product of the current flowing through the wire and area of the loop. Since the same wire is changed from circular shape to square shape, the circumference of the circle can be equated to the perimeter of the square. Using this, we can calculate new areas and new magnetic moments. By comparing this new magnetic moment with the initial magnetic moment, we can reach the final answer.

**Complete step by step solution:**

It is given that the shape of a wire is changed from circular shape to square shape. When the wire is in circular shape the current flowing is given as $I$ and the magnetic moment is given as $M$. We need to find the magnetic moment when the shape of the wire is changed to square. We know that magnetic moment is given as,

$M = NIA$

Where $N$ is the number of turns, $I$ is the current, $A$ is the area.

Let us write the equation for the magnetic moment when the wire is circular.

$M = NIA$

$ \Rightarrow M = IA$

Since number of turns is 1

We know that area of circle is,

$A = \pi {r^2}$

$\therefore M = I\pi {r^2}$................................(1)

Now let us write the magnetic moment when the shape is square.

$M' = NIA'$

$ \Rightarrow M' = IA'$

Area of the square is given as .

$A' = a \times a$

When a is the length of side,

$ \Rightarrow M' = I{a^2}$

Now let us calculate the value of a.

Since the same circular wire is changed to square we can equate the circumference of the circle with the perimeter of the square.

We know the circumference of a circle is given as $2\pi r$, where r is the radius and perimeter of square is four times the length of one side, $4a$ .

$ \Rightarrow 2\pi r = 4a$

$ \Rightarrow a = \dfrac{{\pi r}}{2}$

$\therefore $ Magnetic moment of square can be written as

$ \Rightarrow M' = I{\left( {\dfrac{{\pi r}}{2}} \right)^2}$

$ \Rightarrow M' = \dfrac{{I{\pi ^2}{r^2}}}{4}$...........................(2)

Now we know that from equation 1

$M = I\pi {r^2}$

On substituting this in equation 2, we get

$ \Rightarrow M' = \dfrac{{\left( {I\pi {r^2}} \right) \times \pi }}{4}$

$ \Rightarrow M' = \dfrac{\pi }{4}M$

This is the new magnetic moment.

**So, the correct answer is option (D).**

**Note:**Remember that the magnetic moment depends directly on the area. So, even when current flowing remains the same the magnetic moment will decrease when area is decreased. For a given length of wire the area will be maximum when it is bent in the form of a circle. Hence the new magnetic moment of the square will be less than that of circle shape.

Recently Updated Pages

To get a maximum current in an external resistance class 1 physics JEE_Main

f a body travels with constant acceleration which of class 1 physics JEE_Main

A hollow sphere of mass M and radius R is rotating class 1 physics JEE_Main

If the beams of electrons and protons move parallel class 1 physics JEE_Main

Two radioactive nuclei P and Q in a given sample decay class 1 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Other Pages

Oxidation state of S in H2S2O8 is A 6 B 7 C +8 D 0 class 12 chemistry JEE_Main

A closed organ pipe and an open organ pipe are tuned class 11 physics JEE_Main

Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main

The mole fraction of the solute in a 1 molal aqueous class 11 chemistry JEE_Main

Dissolving 120g of urea molwt60 in 1000g of water gave class 11 chemistry JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main