
A substance having rate constant k and initial concentration reacts according to zero order kinetics. What will be the time for the reaction to go to completion?
A. \[\dfrac{a}{k}\]
B. \[\dfrac{k}{a}\]
C. \[\dfrac{a}{{2k}}\]
D. \[\dfrac{{2k}}{a}\]
Answer
123.6k+ views
Hint: Zero-order reactions are those reactions where the rate of reaction is independent of the increase or decrease in the concentration of reactants. Therefore, it is found that the rate of such reactions is always equal to their rate constants.
Complete step-by-step answer:
The kinetic equation of zero order is x = kt, where x is the quantity of reactant that is converted into product, k is the rate constant of the reaction and t is time taken to process the reaction.
\[100\% \] completion reaction occurs when the initial concentration of reactants is completely converted into a product. Let us assume that the initial concentration of reactant is \[a = {\left[ A \right]_0}\]. When this initial concentration gives rise to a product which is equal to it, then it is called a complete reaction. At this point, the value of x changes to a.
\[a = k \times {t_{100}}\] or we can write it as \[{t_{100}} = \dfrac{a}{k}\].
Therefore, for a reaction to be \[100\% \]completed, the time required in zero order reaction is \[{t_{100}} = \dfrac{a}{k}\].
Hence, the correct option is (A).
Note: The unit of the rate constant can be given by the ratio of concentration by time i.e. M/s or molarity per second.Zero order reactions are generally those reactions in which catalysts are used to process the reaction.
Complete step-by-step answer:
The kinetic equation of zero order is x = kt, where x is the quantity of reactant that is converted into product, k is the rate constant of the reaction and t is time taken to process the reaction.
\[100\% \] completion reaction occurs when the initial concentration of reactants is completely converted into a product. Let us assume that the initial concentration of reactant is \[a = {\left[ A \right]_0}\]. When this initial concentration gives rise to a product which is equal to it, then it is called a complete reaction. At this point, the value of x changes to a.
\[a = k \times {t_{100}}\] or we can write it as \[{t_{100}} = \dfrac{a}{k}\].
Therefore, for a reaction to be \[100\% \]completed, the time required in zero order reaction is \[{t_{100}} = \dfrac{a}{k}\].
Hence, the correct option is (A).
Note: The unit of the rate constant can be given by the ratio of concentration by time i.e. M/s or molarity per second.Zero order reactions are generally those reactions in which catalysts are used to process the reaction.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Chemistry Online Mock Test for Class 12

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids
