
A substance having rate constant k and initial concentration reacts according to zero order kinetics. What will be the time for the reaction to go to completion?
A. \[\dfrac{a}{k}\]
B. \[\dfrac{k}{a}\]
C. \[\dfrac{a}{{2k}}\]
D. \[\dfrac{{2k}}{a}\]
Answer
152.7k+ views
Hint: Zero-order reactions are those reactions where the rate of reaction is independent of the increase or decrease in the concentration of reactants. Therefore, it is found that the rate of such reactions is always equal to their rate constants.
Complete step-by-step answer:
The kinetic equation of zero order is x = kt, where x is the quantity of reactant that is converted into product, k is the rate constant of the reaction and t is time taken to process the reaction.
\[100\% \] completion reaction occurs when the initial concentration of reactants is completely converted into a product. Let us assume that the initial concentration of reactant is \[a = {\left[ A \right]_0}\]. When this initial concentration gives rise to a product which is equal to it, then it is called a complete reaction. At this point, the value of x changes to a.
\[a = k \times {t_{100}}\] or we can write it as \[{t_{100}} = \dfrac{a}{k}\].
Therefore, for a reaction to be \[100\% \]completed, the time required in zero order reaction is \[{t_{100}} = \dfrac{a}{k}\].
Hence, the correct option is (A).
Note: The unit of the rate constant can be given by the ratio of concentration by time i.e. M/s or molarity per second.Zero order reactions are generally those reactions in which catalysts are used to process the reaction.
Complete step-by-step answer:
The kinetic equation of zero order is x = kt, where x is the quantity of reactant that is converted into product, k is the rate constant of the reaction and t is time taken to process the reaction.
\[100\% \] completion reaction occurs when the initial concentration of reactants is completely converted into a product. Let us assume that the initial concentration of reactant is \[a = {\left[ A \right]_0}\]. When this initial concentration gives rise to a product which is equal to it, then it is called a complete reaction. At this point, the value of x changes to a.
\[a = k \times {t_{100}}\] or we can write it as \[{t_{100}} = \dfrac{a}{k}\].
Therefore, for a reaction to be \[100\% \]completed, the time required in zero order reaction is \[{t_{100}} = \dfrac{a}{k}\].
Hence, the correct option is (A).
Note: The unit of the rate constant can be given by the ratio of concentration by time i.e. M/s or molarity per second.Zero order reactions are generally those reactions in which catalysts are used to process the reaction.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
