
A stone is projected from the ground with a velocity of $14m/s$. One second later it clears a wall $2m$ high. The angle of projection is $\left( {g = 10m{s^{ - 2}}} \right)$
A. ${45^ \circ }$
B. ${30^ \circ }$
C. ${60^ \circ }$
D. ${15^ \circ }$
Answer
232.8k+ views
Hint First divide the velocity into its two components and then substitute the vertical component in the third equation of motion. Solving this equation we can establish the angle of projection of the stone.
Formula used:
$S = ut - \dfrac{1}{2}g{t^2}$ where $S$ is the vertical distance, $u$ is the velocity, $t$ is the time taken and $g$ is the acceleration due to gravity.
Complete step by step answer
We can solve this problem by using Newton's laws of motion. There are two types of systems in classical mechanics- dynamic and kinematic. Dynamics essentially describes the motion of a system considering the forces acting on the body whereas kinematics describes the motion of a system without considering the action of forces acting on the body. In this particular problem, we are dealing with a dynamic system.
When a stone is projected from the ground with a given velocity, we can divide its velocity into two components- a $\sin $ component which is the vertical component and a $\cos $ component which is the horizontal component with respect to the ground. It is given that the stone clears a wall of height $2m$ so we can use newton’s third equation of motion
$
S = ut - \dfrac{1}{2}a{t^2} \\
\Rightarrow 2 = t14\sin \theta - \dfrac{1}{2}g{t^2} \\
\Rightarrow 2 = \left( {14\sin \theta \times 1} \right) - \dfrac{1}{2} \times 10 \times {1^2} \\
\Rightarrow 2 = 14\sin \theta - 5 \\
\Rightarrow 14\sin \theta = 7 \\
\Rightarrow \sin \theta = \dfrac{1}{2} \\
\Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \theta = {30^ \circ } \\
$
Therefore, the angle of projection of the stone with respect to the ground is ${30^ \circ }$ So, the correct option is B.
Note Typically the third equation of motion is described as $S = ut + \dfrac{1}{2}a{t^2}$ but in this particular problem we use the negative sign in this equation as the stone is thrown upwards so the force applied is opposite to the acceleration to the gravity acting on the stone.
Formula used:
$S = ut - \dfrac{1}{2}g{t^2}$ where $S$ is the vertical distance, $u$ is the velocity, $t$ is the time taken and $g$ is the acceleration due to gravity.
Complete step by step answer
We can solve this problem by using Newton's laws of motion. There are two types of systems in classical mechanics- dynamic and kinematic. Dynamics essentially describes the motion of a system considering the forces acting on the body whereas kinematics describes the motion of a system without considering the action of forces acting on the body. In this particular problem, we are dealing with a dynamic system.
When a stone is projected from the ground with a given velocity, we can divide its velocity into two components- a $\sin $ component which is the vertical component and a $\cos $ component which is the horizontal component with respect to the ground. It is given that the stone clears a wall of height $2m$ so we can use newton’s third equation of motion
$
S = ut - \dfrac{1}{2}a{t^2} \\
\Rightarrow 2 = t14\sin \theta - \dfrac{1}{2}g{t^2} \\
\Rightarrow 2 = \left( {14\sin \theta \times 1} \right) - \dfrac{1}{2} \times 10 \times {1^2} \\
\Rightarrow 2 = 14\sin \theta - 5 \\
\Rightarrow 14\sin \theta = 7 \\
\Rightarrow \sin \theta = \dfrac{1}{2} \\
\Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\Rightarrow \theta = {30^ \circ } \\
$
Therefore, the angle of projection of the stone with respect to the ground is ${30^ \circ }$ So, the correct option is B.
Note Typically the third equation of motion is described as $S = ut + \dfrac{1}{2}a{t^2}$ but in this particular problem we use the negative sign in this equation as the stone is thrown upwards so the force applied is opposite to the acceleration to the gravity acting on the stone.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

