A steel rod $25\;{\text{cm}}$ long has a cross sectional area of $0.8\;{\text{c}}{{\text{m}}^{\text{2}}}$ . Force required to stretch this rod by the same amount as the by the expansion produced by heating it through ${10^\circ }$ is
(Coefficient of linear expansion of steel is ${10^{ - 5}}{/^\circ }{\text{C}}$ and Young’s modulus of steel is $2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ ).
A) ${\text{160}}\;{\text{N}}$
B) ${\text{360}}\;{\text{N}}$
C) ${\text{106}}\;{\text{N}}$
D) ${\text{260}}\;{\text{N}}$
Answer
Verified
116.1k+ views
Hint:- The ratio of the change in length to the original length can be termed as the strain. The coefficient of linear expansion is proportional to strain and inversely proportional to the change in temperature. From the expression for the Young’s modulus of the steel rod, the force can be found.
Complete Step by step answer:
Given the length of the steel rod is $l = 25\;{\text{cm = 25}} \times {\text{1}}{{\text{0}}^{ - 2}}\;{\text{m}}$, cross sectional area is$A = 0.8\;{\text{c}}{{\text{m}}^{\text{2}}} = 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}}$, coefficient of linear expansion is $\alpha = {10^{ - 5}}{/^\circ }{\text{C}}$, Young’s modulus of steel is $Y = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ and change in temperature is $\Delta t = {10^\circ }{\text{C}}$.
The expression for coefficient of linear expansion is given as,
$
\alpha = \dfrac{{\Delta l}}{{l \times \Delta t}} \\
\dfrac{{\Delta l}}{l} = \alpha \times \Delta t \\
$
Where, $\alpha$ is the coefficient of linear expansion, $\Delta t$ is the change in temperature and $\dfrac{{\Delta l}}{l}$ is the ratio of change in length to the actual length. This can be called the strain.
Substituting the values in the above expression,
$
\dfrac{{\Delta l}}{l} = {10^{ - 5}}{/^\circ }{\text{C}} \times {10^\circ }{\text{C}} \\
{\text{ = 1}}{{\text{0}}^{ - 4}} \\
$
The stain is obtained as ${\text{1}}{{\text{0}}^{ - 4}}$.
The expression for the young’s modulus is given as,
$Y = \dfrac{{F \times l}}{{A \times \Delta l}}$
Where, $F$ is the force required to stretch the steel rod of cross sectional area $A$ and length $l$ by $\Delta l$ .
From the above expression,
$
F = \dfrac{{Y \times A \times \Delta l}}{l} \\
= Y \times A \times \dfrac{{\Delta l}}{l} \\
$
Substituting the values in the above expression,
$
F = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}} \times 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}} \times {10^{ - 4}} \\
= 160\;{\text{N}} \\
$
Therefore the force needed to stretch the steel rod is $160\;{\text{N}}$.
The answer is option A.
Note: We have to note that when the strain is a larger value, the force applied to stretch will be a larger value. And the measure of elasticity is the young’s modulus of the material.
Complete Step by step answer:
Given the length of the steel rod is $l = 25\;{\text{cm = 25}} \times {\text{1}}{{\text{0}}^{ - 2}}\;{\text{m}}$, cross sectional area is$A = 0.8\;{\text{c}}{{\text{m}}^{\text{2}}} = 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}}$, coefficient of linear expansion is $\alpha = {10^{ - 5}}{/^\circ }{\text{C}}$, Young’s modulus of steel is $Y = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ and change in temperature is $\Delta t = {10^\circ }{\text{C}}$.
The expression for coefficient of linear expansion is given as,
$
\alpha = \dfrac{{\Delta l}}{{l \times \Delta t}} \\
\dfrac{{\Delta l}}{l} = \alpha \times \Delta t \\
$
Where, $\alpha$ is the coefficient of linear expansion, $\Delta t$ is the change in temperature and $\dfrac{{\Delta l}}{l}$ is the ratio of change in length to the actual length. This can be called the strain.
Substituting the values in the above expression,
$
\dfrac{{\Delta l}}{l} = {10^{ - 5}}{/^\circ }{\text{C}} \times {10^\circ }{\text{C}} \\
{\text{ = 1}}{{\text{0}}^{ - 4}} \\
$
The stain is obtained as ${\text{1}}{{\text{0}}^{ - 4}}$.
The expression for the young’s modulus is given as,
$Y = \dfrac{{F \times l}}{{A \times \Delta l}}$
Where, $F$ is the force required to stretch the steel rod of cross sectional area $A$ and length $l$ by $\Delta l$ .
From the above expression,
$
F = \dfrac{{Y \times A \times \Delta l}}{l} \\
= Y \times A \times \dfrac{{\Delta l}}{l} \\
$
Substituting the values in the above expression,
$
F = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}} \times 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}} \times {10^{ - 4}} \\
= 160\;{\text{N}} \\
$
Therefore the force needed to stretch the steel rod is $160\;{\text{N}}$.
The answer is option A.
Note: We have to note that when the strain is a larger value, the force applied to stretch will be a larger value. And the measure of elasticity is the young’s modulus of the material.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids