Answer

Verified

67.5k+ views

**Hint:-**The ratio of the change in length to the original length can be termed as the strain. The coefficient of linear expansion is proportional to strain and inversely proportional to the change in temperature. From the expression for the Young’s modulus of the steel rod, the force can be found.

**Complete Step by step answer:**

Given the length of the steel rod is $l = 25\;{\text{cm = 25}} \times {\text{1}}{{\text{0}}^{ - 2}}\;{\text{m}}$, cross sectional area is$A = 0.8\;{\text{c}}{{\text{m}}^{\text{2}}} = 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}}$, coefficient of linear expansion is $\alpha = {10^{ - 5}}{/^\circ }{\text{C}}$, Young’s modulus of steel is $Y = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ and change in temperature is $\Delta t = {10^\circ }{\text{C}}$.

The expression for coefficient of linear expansion is given as,

$

\alpha = \dfrac{{\Delta l}}{{l \times \Delta t}} \\

\dfrac{{\Delta l}}{l} = \alpha \times \Delta t \\

$

Where, $\alpha$ is the coefficient of linear expansion, $\Delta t$ is the change in temperature and $\dfrac{{\Delta l}}{l}$ is the ratio of change in length to the actual length. This can be called the strain.

Substituting the values in the above expression,

$

\dfrac{{\Delta l}}{l} = {10^{ - 5}}{/^\circ }{\text{C}} \times {10^\circ }{\text{C}} \\

{\text{ = 1}}{{\text{0}}^{ - 4}} \\

$

The stain is obtained as ${\text{1}}{{\text{0}}^{ - 4}}$.

The expression for the young’s modulus is given as,

$Y = \dfrac{{F \times l}}{{A \times \Delta l}}$

Where, $F$ is the force required to stretch the steel rod of cross sectional area $A$ and length $l$ by $\Delta l$ .

From the above expression,

$

F = \dfrac{{Y \times A \times \Delta l}}{l} \\

= Y \times A \times \dfrac{{\Delta l}}{l} \\

$

Substituting the values in the above expression,

$

F = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}} \times 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}} \times {10^{ - 4}} \\

= 160\;{\text{N}} \\

$

Therefore the force needed to stretch the steel rod is $160\;{\text{N}}$.

**The answer is option A.**

**Note:**We have to note that when the strain is a larger value, the force applied to stretch will be a larger value. And the measure of elasticity is the young’s modulus of the material.

Recently Updated Pages

Write an article on the need and importance of sports class 10 english JEE_Main

Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main

Choose the one which best expresses the meaning of class 9 english JEE_Main

What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main

A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main

A man stands at a distance of 250m from a wall He shoots class 9 physics JEE_Main

Other Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main