
A steel rod $25\;{\text{cm}}$ long has a cross sectional area of $0.8\;{\text{c}}{{\text{m}}^{\text{2}}}$ . Force required to stretch this rod by the same amount as the by the expansion produced by heating it through ${10^\circ }$ is
(Coefficient of linear expansion of steel is ${10^{ - 5}}{/^\circ }{\text{C}}$ and Young’s modulus of steel is $2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ ).
A) ${\text{160}}\;{\text{N}}$
B) ${\text{360}}\;{\text{N}}$
C) ${\text{106}}\;{\text{N}}$
D) ${\text{260}}\;{\text{N}}$
Answer
214.5k+ views
Hint:- The ratio of the change in length to the original length can be termed as the strain. The coefficient of linear expansion is proportional to strain and inversely proportional to the change in temperature. From the expression for the Young’s modulus of the steel rod, the force can be found.
Complete Step by step answer:
Given the length of the steel rod is $l = 25\;{\text{cm = 25}} \times {\text{1}}{{\text{0}}^{ - 2}}\;{\text{m}}$, cross sectional area is$A = 0.8\;{\text{c}}{{\text{m}}^{\text{2}}} = 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}}$, coefficient of linear expansion is $\alpha = {10^{ - 5}}{/^\circ }{\text{C}}$, Young’s modulus of steel is $Y = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ and change in temperature is $\Delta t = {10^\circ }{\text{C}}$.
The expression for coefficient of linear expansion is given as,
$
\alpha = \dfrac{{\Delta l}}{{l \times \Delta t}} \\
\dfrac{{\Delta l}}{l} = \alpha \times \Delta t \\
$
Where, $\alpha$ is the coefficient of linear expansion, $\Delta t$ is the change in temperature and $\dfrac{{\Delta l}}{l}$ is the ratio of change in length to the actual length. This can be called the strain.
Substituting the values in the above expression,
$
\dfrac{{\Delta l}}{l} = {10^{ - 5}}{/^\circ }{\text{C}} \times {10^\circ }{\text{C}} \\
{\text{ = 1}}{{\text{0}}^{ - 4}} \\
$
The stain is obtained as ${\text{1}}{{\text{0}}^{ - 4}}$.
The expression for the young’s modulus is given as,
$Y = \dfrac{{F \times l}}{{A \times \Delta l}}$
Where, $F$ is the force required to stretch the steel rod of cross sectional area $A$ and length $l$ by $\Delta l$ .
From the above expression,
$
F = \dfrac{{Y \times A \times \Delta l}}{l} \\
= Y \times A \times \dfrac{{\Delta l}}{l} \\
$
Substituting the values in the above expression,
$
F = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}} \times 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}} \times {10^{ - 4}} \\
= 160\;{\text{N}} \\
$
Therefore the force needed to stretch the steel rod is $160\;{\text{N}}$.
The answer is option A.
Note: We have to note that when the strain is a larger value, the force applied to stretch will be a larger value. And the measure of elasticity is the young’s modulus of the material.
Complete Step by step answer:
Given the length of the steel rod is $l = 25\;{\text{cm = 25}} \times {\text{1}}{{\text{0}}^{ - 2}}\;{\text{m}}$, cross sectional area is$A = 0.8\;{\text{c}}{{\text{m}}^{\text{2}}} = 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}}$, coefficient of linear expansion is $\alpha = {10^{ - 5}}{/^\circ }{\text{C}}$, Young’s modulus of steel is $Y = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}}$ and change in temperature is $\Delta t = {10^\circ }{\text{C}}$.
The expression for coefficient of linear expansion is given as,
$
\alpha = \dfrac{{\Delta l}}{{l \times \Delta t}} \\
\dfrac{{\Delta l}}{l} = \alpha \times \Delta t \\
$
Where, $\alpha$ is the coefficient of linear expansion, $\Delta t$ is the change in temperature and $\dfrac{{\Delta l}}{l}$ is the ratio of change in length to the actual length. This can be called the strain.
Substituting the values in the above expression,
$
\dfrac{{\Delta l}}{l} = {10^{ - 5}}{/^\circ }{\text{C}} \times {10^\circ }{\text{C}} \\
{\text{ = 1}}{{\text{0}}^{ - 4}} \\
$
The stain is obtained as ${\text{1}}{{\text{0}}^{ - 4}}$.
The expression for the young’s modulus is given as,
$Y = \dfrac{{F \times l}}{{A \times \Delta l}}$
Where, $F$ is the force required to stretch the steel rod of cross sectional area $A$ and length $l$ by $\Delta l$ .
From the above expression,
$
F = \dfrac{{Y \times A \times \Delta l}}{l} \\
= Y \times A \times \dfrac{{\Delta l}}{l} \\
$
Substituting the values in the above expression,
$
F = 2 \times {10^{10}}\;{\text{N/}}{{\text{m}}^{\text{2}}} \times 0.8\; \times {10^{ - 4}}\;{{\text{m}}^{\text{2}}} \times {10^{ - 4}} \\
= 160\;{\text{N}} \\
$
Therefore the force needed to stretch the steel rod is $160\;{\text{N}}$.
The answer is option A.
Note: We have to note that when the strain is a larger value, the force applied to stretch will be a larger value. And the measure of elasticity is the young’s modulus of the material.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Atomic Structure: Definition, Models, and Examples

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

What is the period of small oscillations of the block class 11 physics JEE_Main

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

