
A square plate \[0.1m\] side moves parallel to a second plate with a velocity of \[0.1m{s^{ - 1}}\]. Both plates are immersed in water. If the viscous force is \[0.002N\] and the coefficient of viscosity \[0.001poise\], distance between the plates is:
(A) \[0.1m\]
(B) \[0.05m\]
(C ) \[0.005m\]
(D) \[0.0005m\]
Answer
218.1k+ views
Hint:We have the values of all required quantities in the question. We would calculate the area of the square plate at first as the dimension of one of the sides is given.
Using that value of area, and the formula for viscous force we can obtain the required value of distance between the plates.
Complete step-by-step answer:
As per the question, the following values of given to us:
Side of the plate \[ = 0.1m = a\]
Velocity of the plate \[ = dv = 0.1m{s^{ - 1}}\]
Viscous force \[ = F = 0.002N\]
Coefficient of viscosity \[ = 0.001poise\]
From here, we can calculate the area of the plate is \[ = {a^2} = (0.1 \times 0.1){m^2}\]
Thus, area \[ = 0.01{m^2}\]
Coefficient of Viscosity \[ = \eta = 0.001poise\]
But, we need to take the value in decaPoise, therefore we divide it by \[10\]
Therefore, \[\eta = \dfrac{{0.001}}{{10}}decapoise = 0.0001decapoise\]
We have the velocity of the plate given,
Now, using the expression for viscous force, we get:
\[F = \eta A\dfrac{{dv}}{{dx}}\]
Where:
\[F = \] Viscous force
\[\eta = \] Coefficient of viscosity
\[A = \] Area of the plate
\[dv = \] Velocity with which the plate moves
\[dx = \] Distance between the plates.
For the above expression, we need to find the value of \[dx\].
Putting the values, in the expression we get:
\[0.002 = \dfrac{{0.0001 \times 0.01 \times 0.1}}{{dx}}\]
Rearranging the equation we get:
\[dx = \dfrac{{0.0001 \times 0.01 \times 0.1}}{{0.002}}\]
Thus, we obtain:
\[dx = 0.00005m\]
This is the required solution.
Note:The unit poise is in the MKS unit, therefore, we need to convert it to deca poise, and otherwise we may get erroneous results. Viscosity is defined as a resistance experienced by a fluid while it flows. This is a property of the fluid. Viscous force is defined as the force between a body and the fluid, while it flows.
Using that value of area, and the formula for viscous force we can obtain the required value of distance between the plates.
Complete step-by-step answer:
As per the question, the following values of given to us:
Side of the plate \[ = 0.1m = a\]
Velocity of the plate \[ = dv = 0.1m{s^{ - 1}}\]
Viscous force \[ = F = 0.002N\]
Coefficient of viscosity \[ = 0.001poise\]
From here, we can calculate the area of the plate is \[ = {a^2} = (0.1 \times 0.1){m^2}\]
Thus, area \[ = 0.01{m^2}\]
Coefficient of Viscosity \[ = \eta = 0.001poise\]
But, we need to take the value in decaPoise, therefore we divide it by \[10\]
Therefore, \[\eta = \dfrac{{0.001}}{{10}}decapoise = 0.0001decapoise\]
We have the velocity of the plate given,
Now, using the expression for viscous force, we get:
\[F = \eta A\dfrac{{dv}}{{dx}}\]
Where:
\[F = \] Viscous force
\[\eta = \] Coefficient of viscosity
\[A = \] Area of the plate
\[dv = \] Velocity with which the plate moves
\[dx = \] Distance between the plates.
For the above expression, we need to find the value of \[dx\].
Putting the values, in the expression we get:
\[0.002 = \dfrac{{0.0001 \times 0.01 \times 0.1}}{{dx}}\]
Rearranging the equation we get:
\[dx = \dfrac{{0.0001 \times 0.01 \times 0.1}}{{0.002}}\]
Thus, we obtain:
\[dx = 0.00005m\]
This is the required solution.
Note:The unit poise is in the MKS unit, therefore, we need to convert it to deca poise, and otherwise we may get erroneous results. Viscosity is defined as a resistance experienced by a fluid while it flows. This is a property of the fluid. Viscous force is defined as the force between a body and the fluid, while it flows.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

