
A spring of spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]is stretched initially by \[5cm\] from the unstretched position. Then the work required to stretch it further by another \[5cm\]is:
1. \[12.50{\rm{N - m}}\]
2. \[{\rm{18}}{\rm{.75N - m}}\]
3. \[{\rm{25N - m}}\]
4. \[{\rm{6}}{\rm{.25N - m}}\]
Answer
218.4k+ views
Hint:Here, the concept that we are going to use is of oscillation in the springs, but here it is not mentioned that the spring is oscillating. It's only one time from an unstretched position, and we have to calculate the other stretch of \[5cm\].
Formula used:
\[{W_i} = \dfrac{1}{2}k{x_i}^2\], \[{W_f} = \dfrac{1}{2}k{x_f}^2\], \[{W_{net}} = {W_f} - {W_i}\]
Complete answer:
Let us begin by sorting out the given data in the question. Here the initial position is taken as \[5cm\] away from unstretched position, therefore, by considering \[{x_i}\] as initial position we have
\[{x_i} = 5cm = 0.05m\]
Similarly, final position is at another \[5cm\] away from the initial position, therefore, by considering \[{x_f}\]as final position we have
\[{x_f} = 5cm + 5cm = 10cm = 0.1m\]
Also, spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]
Work done at initial position is calculated by
\[{W_i} = \dfrac{1}{2}k{x_i}^2\]
Let us put all the given values in the above formula for work done
\[{W_i} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\; \times {\left( {0.05} \right)^2}{m^2}\]
\[\therefore {W_i} = 6.25N - m\]
Similarly, for final position work done is given by
\[{W_f} = \dfrac{1}{2}k{x_f}^2\]
Now, let us put all the values given in the above formula, we get
\[{W_f} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}} \times {\left( {0.1} \right)^2}{m^2}\]
\[\therefore {W_f} = 25N - m\]
Now, the work done required for another \[5cm\] stretch is
Net work done, \[{W_{net}} = {W_f} - {W_i}\]
\[{W_{net}} = 25N - 6.25N\] … (from above calculated terms)
\[\therefore {W_{net}} = 18.75~N - m\]
Thus, the total work done is given by \[18.75N - m\], i.e., option 2.
Note: When we talk about net work done we have to calculate it with respect to initial and final work done then only we can be able to solve this type of questions. In this question you must have observed that the initial position does not start from zero because the question itself says consider the first stretch as the initial position.
Formula used:
\[{W_i} = \dfrac{1}{2}k{x_i}^2\], \[{W_f} = \dfrac{1}{2}k{x_f}^2\], \[{W_{net}} = {W_f} - {W_i}\]
Complete answer:
Let us begin by sorting out the given data in the question. Here the initial position is taken as \[5cm\] away from unstretched position, therefore, by considering \[{x_i}\] as initial position we have
\[{x_i} = 5cm = 0.05m\]
Similarly, final position is at another \[5cm\] away from the initial position, therefore, by considering \[{x_f}\]as final position we have
\[{x_f} = 5cm + 5cm = 10cm = 0.1m\]
Also, spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]
Work done at initial position is calculated by
\[{W_i} = \dfrac{1}{2}k{x_i}^2\]
Let us put all the given values in the above formula for work done
\[{W_i} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\; \times {\left( {0.05} \right)^2}{m^2}\]
\[\therefore {W_i} = 6.25N - m\]
Similarly, for final position work done is given by
\[{W_f} = \dfrac{1}{2}k{x_f}^2\]
Now, let us put all the values given in the above formula, we get
\[{W_f} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}} \times {\left( {0.1} \right)^2}{m^2}\]
\[\therefore {W_f} = 25N - m\]
Now, the work done required for another \[5cm\] stretch is
Net work done, \[{W_{net}} = {W_f} - {W_i}\]
\[{W_{net}} = 25N - 6.25N\] … (from above calculated terms)
\[\therefore {W_{net}} = 18.75~N - m\]
Thus, the total work done is given by \[18.75N - m\], i.e., option 2.
Note: When we talk about net work done we have to calculate it with respect to initial and final work done then only we can be able to solve this type of questions. In this question you must have observed that the initial position does not start from zero because the question itself says consider the first stretch as the initial position.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

