
A sound wave has a frequency of 100 Hz and pressure amplitude of 10 Pa, then the displacement amplitude is:
(Given speed of sound in air \[ = 340m/s\] and density of air \[ = 1.29kg/{m^3}\])
(A) \[3.63 \times {10^{ - 5}}m\]
(B) \[3 \times {10^{ - 5}}m\]
(C) \[4.2 \times {10^{ - 5}}m\]
(D) \[6.8 \times {10^{ - 5}}m\]
Answer
218.1k+ views
Hint: The pressure amplitude of a wave is equal to the product of the bulk modulus of the fluid, displacement amplitude and the wave number of the wave. Recall that the velocity can be given as the square root of the ratio of the bulk modulus to the density of the medium.
Formula used: In this solution we will be using the following formulae;
\[v = \sqrt {\dfrac{B}{\rho }} \] where \[v\] is the speed of sound in a fluid, \[B\] is the bulk modulus of the fluid, and \[\rho \] is the density.
\[{P_0} = BAk\] where \[P\] is the pressure amplitude of a sound wave, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
\[k = \dfrac{{2\pi }}{\lambda }\] where \[\lambda \] is the wavelength of the wave.
\[v = f\lambda \] where \[v\] is the speed of the wave, \[f\] is the frequency.
Complete Step-by-Step Solution:
Given the pressure amplitude, we are asked to find the displacement amplitude. Generally, the formula of the pressure amplitude is given as
\[{P_0} = BAk\] where \[B\] is the bulk modulus of the fluid the wave travels, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
To calculate \[B\], we recall that
\[v = \sqrt {\dfrac{B}{\rho }} \]
\[ \Rightarrow B = {v^2}\rho \]
Hence, by inserting known values, we have
\[B = {340^2} \times 1.29 = 149124Pa\]
To calculate \[k\], we recall that
\[k = \dfrac{{2\pi }}{\lambda }\] but \[v = f\lambda \], where \[v\] is the speed of the wave, \[f\] is the frequency and \[\lambda \] is the wavelength of the wave, hence,
\[k = \dfrac{{2\pi f}}{v} = \dfrac{{2\pi \left( {100} \right)}}{{340}} = 1.8480{m^{ - 1}}\]
Hence, from \[{P_0} = BAk\]
\[A = \dfrac{{{P_0}}}{{Bk}}\]
\[ \Rightarrow A = \dfrac{{10}}{{149124 \times 1.84800}} = 3.63 \times {10^{ - 5}}m\]
Hence, the correct answer is A
Note: Alternatively, to avoid time consuming intermediate calculations and approximation errors, we used find the final expression before inserting all known values, as in;
From
\[A = \dfrac{{{P_0}}}{{Bk}}\]
Considering that \[B = {v^2}\rho \] and \[k = \dfrac{{2\pi f}}{v}\] we can substitute into the equation above. Hence,
\[A = \dfrac{{{P_0}}}{{\left( {{v^2}\rho } \right)\left( {\dfrac{{2\pi f}}{v}} \right)}}\]
Simplifying by cancelling \[v\], we have
\[A = \dfrac{{{P_0}}}{{2\pi fv\rho }}\]
Hence, by inserting values, we get
\[ \Rightarrow A = \dfrac{{10}}{{2\pi \times 100 \times 340 \times 1.29}} = 3.63 \times {10^{ - 5}}m\]
Formula used: In this solution we will be using the following formulae;
\[v = \sqrt {\dfrac{B}{\rho }} \] where \[v\] is the speed of sound in a fluid, \[B\] is the bulk modulus of the fluid, and \[\rho \] is the density.
\[{P_0} = BAk\] where \[P\] is the pressure amplitude of a sound wave, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
\[k = \dfrac{{2\pi }}{\lambda }\] where \[\lambda \] is the wavelength of the wave.
\[v = f\lambda \] where \[v\] is the speed of the wave, \[f\] is the frequency.
Complete Step-by-Step Solution:
Given the pressure amplitude, we are asked to find the displacement amplitude. Generally, the formula of the pressure amplitude is given as
\[{P_0} = BAk\] where \[B\] is the bulk modulus of the fluid the wave travels, \[A\] is the displacement amplitude, \[k\] is the wave number of the wave.
To calculate \[B\], we recall that
\[v = \sqrt {\dfrac{B}{\rho }} \]
\[ \Rightarrow B = {v^2}\rho \]
Hence, by inserting known values, we have
\[B = {340^2} \times 1.29 = 149124Pa\]
To calculate \[k\], we recall that
\[k = \dfrac{{2\pi }}{\lambda }\] but \[v = f\lambda \], where \[v\] is the speed of the wave, \[f\] is the frequency and \[\lambda \] is the wavelength of the wave, hence,
\[k = \dfrac{{2\pi f}}{v} = \dfrac{{2\pi \left( {100} \right)}}{{340}} = 1.8480{m^{ - 1}}\]
Hence, from \[{P_0} = BAk\]
\[A = \dfrac{{{P_0}}}{{Bk}}\]
\[ \Rightarrow A = \dfrac{{10}}{{149124 \times 1.84800}} = 3.63 \times {10^{ - 5}}m\]
Hence, the correct answer is A
Note: Alternatively, to avoid time consuming intermediate calculations and approximation errors, we used find the final expression before inserting all known values, as in;
From
\[A = \dfrac{{{P_0}}}{{Bk}}\]
Considering that \[B = {v^2}\rho \] and \[k = \dfrac{{2\pi f}}{v}\] we can substitute into the equation above. Hence,
\[A = \dfrac{{{P_0}}}{{\left( {{v^2}\rho } \right)\left( {\dfrac{{2\pi f}}{v}} \right)}}\]
Simplifying by cancelling \[v\], we have
\[A = \dfrac{{{P_0}}}{{2\pi fv\rho }}\]
Hence, by inserting values, we get
\[ \Rightarrow A = \dfrac{{10}}{{2\pi \times 100 \times 340 \times 1.29}} = 3.63 \times {10^{ - 5}}m\]
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

