
A soccer ball with a radius of $25cm$, is kicked with an initial velocity of $15 m/s$ and rolls without slipping across a level horizontal grass field. If the acceleration of the ball is $-25.0m{s^{-2}}$. Which of the following statements best represents how many rotations the ball makes before coming to rest?
(A) $2.9$ revolutions.
(B) $4.5$ revolutions.
(C) $12.5$ revolutions.
(D) $18$ revolutions.
(E) $24$ revolutions.
Answer
208.8k+ views
Hint: The given problem can be solved using one of the four equations of kinetic energy. In this problem we will use the kinematics of the rotational motion formula then, the rotation of the ball before the ball is coming to the rest is determined.
Formula used:
The kinematics of the rotational motion of the ball is given by;
$\omega _f^2 - \omega _i^2 = 2\alpha \theta $
Where, ${\omega _f}$ denotes the final angular velocity of the ball, ${\omega _i}$ denotes the initial angular velocity of the ball, $\alpha $ denotes the acceleration of the ball of the ball.
Complete step by step solution:
The data given in the problem is;
Final velocity, $v = 0\,\,m{s^{ - 1}}$,
Initial velocity, $u = 15\,\,m{s^{ - 1}}$,
Acceleration, $a = - 25.0\,\,m{s^{ - 2}}$,
Radius of the ball, $r = 25cm = 0.25m$
The rotational kinetic energy of the ball is;
$\Rightarrow \omega _f^2 - \omega _i^2 = 2\alpha \theta $
Where, $v = r{\omega _f}$; $u = r{\omega _i}$; $a = r\alpha $;
$\Rightarrow \dfrac{{{v^2}}}{{{r^2}}} - \dfrac{{{u^2}}}{{{r^2}}} = 2\left[ {\dfrac{a}{r}} \right]\theta $
Now substitute the values of $v$,$u$,$a$and $r$ in the above equation;
$\Rightarrow \dfrac{0}{{{{\left( {0.25} \right)}^2}}} - \dfrac{{{{\left( {15} \right)}^2}}}{{{{\left( {0.25} \right)}^2}}} = 2\left[ {\dfrac{{ - 25.0}}{{0.25}}} \right]\theta $
$\Rightarrow 0 - \dfrac{{225}}{{0.0625}} = 2\left[ { - 100} \right]\theta $
$\Rightarrow - 3600 = - 200 \times \theta $
Therefore,
$\Rightarrow \theta = 18$ radian
The number of revolutions that the ball made is;
$\Rightarrow N = \dfrac{\theta }{{2\pi }}$
Where, $N$ is the number of revolutions made by the ball.
Substitute the value of $\theta = 18$ radian;
$\Rightarrow N = \dfrac{{18}}{{2\pi }}$
$\Rightarrow N = 2.9$revolutions.
Therefore, the number of revolutions made by the ball is $N = 2.9$ revolutions before coming to rest.
Hence, the option $N = 2.9$ revolutions is the correct answer.
Thus, the option A is correct.
Note: In proportion to the turning energy or the angular kinetic energy the kinetic energy of the object is obtained by the rotation of that particular object. The number of the revolution is directly proportional to the angle and inversely proportional to the $2\pi $.
Formula used:
The kinematics of the rotational motion of the ball is given by;
$\omega _f^2 - \omega _i^2 = 2\alpha \theta $
Where, ${\omega _f}$ denotes the final angular velocity of the ball, ${\omega _i}$ denotes the initial angular velocity of the ball, $\alpha $ denotes the acceleration of the ball of the ball.
Complete step by step solution:
The data given in the problem is;
Final velocity, $v = 0\,\,m{s^{ - 1}}$,
Initial velocity, $u = 15\,\,m{s^{ - 1}}$,
Acceleration, $a = - 25.0\,\,m{s^{ - 2}}$,
Radius of the ball, $r = 25cm = 0.25m$
The rotational kinetic energy of the ball is;
$\Rightarrow \omega _f^2 - \omega _i^2 = 2\alpha \theta $
Where, $v = r{\omega _f}$; $u = r{\omega _i}$; $a = r\alpha $;
$\Rightarrow \dfrac{{{v^2}}}{{{r^2}}} - \dfrac{{{u^2}}}{{{r^2}}} = 2\left[ {\dfrac{a}{r}} \right]\theta $
Now substitute the values of $v$,$u$,$a$and $r$ in the above equation;
$\Rightarrow \dfrac{0}{{{{\left( {0.25} \right)}^2}}} - \dfrac{{{{\left( {15} \right)}^2}}}{{{{\left( {0.25} \right)}^2}}} = 2\left[ {\dfrac{{ - 25.0}}{{0.25}}} \right]\theta $
$\Rightarrow 0 - \dfrac{{225}}{{0.0625}} = 2\left[ { - 100} \right]\theta $
$\Rightarrow - 3600 = - 200 \times \theta $
Therefore,
$\Rightarrow \theta = 18$ radian
The number of revolutions that the ball made is;
$\Rightarrow N = \dfrac{\theta }{{2\pi }}$
Where, $N$ is the number of revolutions made by the ball.
Substitute the value of $\theta = 18$ radian;
$\Rightarrow N = \dfrac{{18}}{{2\pi }}$
$\Rightarrow N = 2.9$revolutions.
Therefore, the number of revolutions made by the ball is $N = 2.9$ revolutions before coming to rest.
Hence, the option $N = 2.9$ revolutions is the correct answer.
Thus, the option A is correct.
Note: In proportion to the turning energy or the angular kinetic energy the kinetic energy of the object is obtained by the rotation of that particular object. The number of the revolution is directly proportional to the angle and inversely proportional to the $2\pi $.
Recently Updated Pages
JEE Main 2026 Cutoff Percentile: Rank Vs Percentile

JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

