
A small hole of an area of cross-section $2\,\,m{m^2}$ is present near the bottom of a fully filled open tank of height $2\,\,m$. Taking $g = 10\,\,m{s^{ - 2}}$, the rate of flow of water through the open hole would be nearly;
A) $12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
B) $8.9 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
C) $2.23 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
D) $6.4 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
Answer
146.1k+ views
Hint:- The given above problem can be solved using the formula that is derived from the rate of flow of the liquid due the acceleration due to gravity with respect to the area of cross-section through which the liquid has to flows from with a certain velocity
Useful formula:
The rate of flow of liquid is given by;
$Q = au$
Where, $Q$ denotes the rate of flow of liquid through the open hole, $a$ denotes the cross-sectional area of the hole, $u$ denotes the velocity with which the liquid flows.
Complete step by step solution:
The data given in the problem is;
The area of the cross section of the hole is, $a = 2\,\,m{m^2}$.
The height of the tank filed with the liquid is, $h = 2\,\,m$.
The value of the gravity is, $g = 10\,\,m{s^{ - 2}}$
The rate of flow of liquid through the hole is given by;
$Q = au\,\,..........\left( 1 \right)$
Since we know that the,
$u = \sqrt {2gh} $
Where, $g$is the acceleration due to gravity, $h$ denotes the height of the tank that is filled with the liquid.
Substitute the value of the height of the tank, $h = 2\,\,m$ and the value of the acceleration due to gravity, $g = 10\,\,m{s^{ - 2}}$ in the above formula;
$
u = \sqrt {2 \times 10 \times 2} \\
u = \sqrt {40} \\
u = 6.324\,\,m{s^{ - 1}} \\
$
Substitute the values of the area if the cross-section, $a = 2\,\,m{m^2}$ and the value of the velocity through which the liquid flows is, $u = 6.324\,\,m{s^{ - 1}}$ in the equation (1);
$Q = au\,\,..........\left( 1 \right)$
$Q = 2 \times {10^{ - 6}}\,\,{m^2} \times 6.324\,\,m{s^{ - 1}}$
On equating the equation, we get;
$Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
Therefore, the rate of flow liquid through a cross- sectional area of a hole is $Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$.
Hence the option (A), $Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$ is the correct answer.
Note: The rate of flow of the liquid changes drastically when the area of cross-section through which it flows increases or decreases in its area. The height of the liquid from which it flows can also change the rate of flow of the liquid as it affects the velocity with which the liquid flows.
Useful formula:
The rate of flow of liquid is given by;
$Q = au$
Where, $Q$ denotes the rate of flow of liquid through the open hole, $a$ denotes the cross-sectional area of the hole, $u$ denotes the velocity with which the liquid flows.
Complete step by step solution:
The data given in the problem is;
The area of the cross section of the hole is, $a = 2\,\,m{m^2}$.
The height of the tank filed with the liquid is, $h = 2\,\,m$.
The value of the gravity is, $g = 10\,\,m{s^{ - 2}}$
The rate of flow of liquid through the hole is given by;
$Q = au\,\,..........\left( 1 \right)$
Since we know that the,
$u = \sqrt {2gh} $
Where, $g$is the acceleration due to gravity, $h$ denotes the height of the tank that is filled with the liquid.
Substitute the value of the height of the tank, $h = 2\,\,m$ and the value of the acceleration due to gravity, $g = 10\,\,m{s^{ - 2}}$ in the above formula;
$
u = \sqrt {2 \times 10 \times 2} \\
u = \sqrt {40} \\
u = 6.324\,\,m{s^{ - 1}} \\
$
Substitute the values of the area if the cross-section, $a = 2\,\,m{m^2}$ and the value of the velocity through which the liquid flows is, $u = 6.324\,\,m{s^{ - 1}}$ in the equation (1);
$Q = au\,\,..........\left( 1 \right)$
$Q = 2 \times {10^{ - 6}}\,\,{m^2} \times 6.324\,\,m{s^{ - 1}}$
On equating the equation, we get;
$Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$
Therefore, the rate of flow liquid through a cross- sectional area of a hole is $Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$.
Hence the option (A), $Q = 12.6 \times {10^{ - 6}}\,\,{m^3}\,{s^{ - 1}}$ is the correct answer.
Note: The rate of flow of the liquid changes drastically when the area of cross-section through which it flows increases or decreases in its area. The height of the liquid from which it flows can also change the rate of flow of the liquid as it affects the velocity with which the liquid flows.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
