Answer
Verified
398.3k+ views
Hint Electric dipole is defined as a couple of opposite charges q and -q separated by a distance of d. The direction of the electric dipoles in the space is always from negative charge -q to the positive charge q. Based on this concept this question is to be solved.
Step-by step answer
The electric field due to a dipole at any point in space is given by,
$E = \dfrac{1}{{\left( {4\pi {\varepsilon _0}{r^3}} \right)\left( {3(\vec p \cdot \hat r)\hat r - p} \right)}}$
So, we can write that:
$r = 2\hat i + 2\sqrt {2j} \Rightarrow \hat r = \dfrac{1}{{\sqrt {3i} }} + \sqrt {\dfrac{2}{3}\hat j}$
The value of $\operatorname{Tan} \theta = \dfrac{y}{x} = \dfrac{{2\sqrt 2 }}{2} = \sqrt 2$
Hence the value of E is given by:
$E = \dfrac{1}{{\left( {4\pi {\varepsilon _0}{r^3}} \right)(\sqrt 3 p\hat rp\hat i)}}$
The i component cancels out leaving only the j component.
Form the figure we can see that:
From the figure,
$\operatorname{Tan} \phi = \cot \theta$ so,
$\phi = 90 - \theta$
Now $\vec E$ is along + y-axis
Hence, the correct answer is Option B.
Note Electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field radially outward from a positive charge and radially in toward a negative point charge.
Step-by step answer
The electric field due to a dipole at any point in space is given by,
$E = \dfrac{1}{{\left( {4\pi {\varepsilon _0}{r^3}} \right)\left( {3(\vec p \cdot \hat r)\hat r - p} \right)}}$
So, we can write that:
$r = 2\hat i + 2\sqrt {2j} \Rightarrow \hat r = \dfrac{1}{{\sqrt {3i} }} + \sqrt {\dfrac{2}{3}\hat j}$
The value of $\operatorname{Tan} \theta = \dfrac{y}{x} = \dfrac{{2\sqrt 2 }}{2} = \sqrt 2$
Hence the value of E is given by:
$E = \dfrac{1}{{\left( {4\pi {\varepsilon _0}{r^3}} \right)(\sqrt 3 p\hat rp\hat i)}}$
The i component cancels out leaving only the j component.
Form the figure we can see that:
From the figure,
$\operatorname{Tan} \phi = \cot \theta$ so,
$\phi = 90 - \theta$
Now $\vec E$ is along + y-axis
Hence, the correct answer is Option B.
Note Electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field radially outward from a positive charge and radially in toward a negative point charge.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main