A simple harmonic motion has an amplitude $A$ and time period $T$ . Find the time required by it to travel directly from $x = 0$ to $x = \dfrac{A}{2}$ .
Answer
Verified
116.7k+ views
Hint: Use the formula of the displacement of the simple harmonic motion and substitute the displacement in it. From the simplified relation substitute the angular frequency formula to find the time required to travel the displacement of half the amplitude.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Useful formula:
(1) The formula of the displacement of the simple harmonic motion is given by
$x = A\sin \omega t$
Where $x$ is the displacement of the wave, $A$ is the amplitude of the simple harmonic motion and $\omega $ is the angular frequency of the wave and $t$ is the time taken for the displacement.
(2) The formula of the angular frequency of the simple harmonic motion is given by
$\omega = \dfrac{{2\pi }}{T}$
Where $\omega $ is the angular frequency of the wave and $T$ is the time period of the wave.
Complete step by step solution:
It is given that the amplitude and the time period of the simple harmonic motion is $A$ and $T$ respectively.
Initial position is $x = 0$ and the final position is $x = \dfrac{A}{2}$
Using the formula of the displacement of the simple harmonic motion,
$x = A\sin \omega t$
Substituting the displacement in the above equation, we get
$
\dfrac{A}{2} = A\sin \omega t \\
\omega t = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\
\omega t = \dfrac{\pi }{6} \\
$
Substituting the formula of the angular frequency in the above step, we get
$\dfrac{{2\pi }}{T}t = \dfrac{\pi }{6}$
By cancelling the similar terms in the above equation,
$t = \dfrac{T}{{12}}$
Hence the time required to travel from one position to the other is $\dfrac{T}{{12}}$ .
Note: In the simple harmonic motion, the restoring force is equal to the object magnitude and it is the periodic motion. The sine wave is an example of this type of motion. Time period is the reciprocal of the angular frequency. Remember the formula of the displacement of simple harmonic motion.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids