Answer
Verified
87.9k+ views
Hint: We can easily calculate the value of the force constant if we know the relation between the frequency, mass and force constant for a body in simple harmonic motion. As in the question force constant of a bond connecting one atom of silver to another is asked, we will use the mass of one silver atom for calculating the force constant.
Formula Used:
For simple harmonic motion,
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Where $T$ is the time period of the simple harmonic oscillation, $m$ is the mass of the body oscillating in simple harmonic motion and $k$ is the force constant of the bonds connecting one atom with the other.
Complete step by step answer:
We know that for a simple harmonic motion,
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Where $T$ is the time period of the simple harmonic oscillation, $m$ is the mass of one silver atom oscillating in simple harmonic motion and $k$ is the force constant of the bonds connecting one silver atom with the other.
In the question frequency ($f$ ) is given as${10^{12}}{\sec ^{ - 1}}$. But we need a time period for the equation. So,
$T = \dfrac{1}{f}$
$ \Rightarrow T = \dfrac{1}{{{{10}^{12}}}} = {10^{ - 12}}\sec $
Also in the question mass of one mole of silver atom is given. We need to calculate the mass of one atom of silver. So mass of one silver atom ( $m$ ) is,
$m = \dfrac{M}{{{N_A}}}$
Where $M$is the mass of one mole of silver atom and ${N_A}$ is the Avogadro’s number i.e.$6.02 \times {10^{23}}gm/mole$
$ \Rightarrow m = \dfrac{{108}}{{6.02 \times {{10}^{23}}}} \times {10^{ - 3}}kg$
Substituting the values of $T$ and $m$in the equation of time period for simple harmonic motion, we get
${10^{ - 12}} = 2\pi \sqrt {\dfrac{{108 \times {{10}^{ - 3}}}}{{k \times 6.02 \times {{10}^{23}}}}} $
$ \Rightarrow k = 7.1\dfrac{N}{m}$
Hence, the correct option is (D).
Note: In the above question we should be careful with the values because molar mass is given but we need to find a force constant for a single atom. Also we should be careful about the units of all the individual quantities as the options are given in $\dfrac{N}{m}$ and to calculate in Newton the mass should be kilogram and not in grams.
Formula Used:
For simple harmonic motion,
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Where $T$ is the time period of the simple harmonic oscillation, $m$ is the mass of the body oscillating in simple harmonic motion and $k$ is the force constant of the bonds connecting one atom with the other.
Complete step by step answer:
We know that for a simple harmonic motion,
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Where $T$ is the time period of the simple harmonic oscillation, $m$ is the mass of one silver atom oscillating in simple harmonic motion and $k$ is the force constant of the bonds connecting one silver atom with the other.
In the question frequency ($f$ ) is given as${10^{12}}{\sec ^{ - 1}}$. But we need a time period for the equation. So,
$T = \dfrac{1}{f}$
$ \Rightarrow T = \dfrac{1}{{{{10}^{12}}}} = {10^{ - 12}}\sec $
Also in the question mass of one mole of silver atom is given. We need to calculate the mass of one atom of silver. So mass of one silver atom ( $m$ ) is,
$m = \dfrac{M}{{{N_A}}}$
Where $M$is the mass of one mole of silver atom and ${N_A}$ is the Avogadro’s number i.e.$6.02 \times {10^{23}}gm/mole$
$ \Rightarrow m = \dfrac{{108}}{{6.02 \times {{10}^{23}}}} \times {10^{ - 3}}kg$
Substituting the values of $T$ and $m$in the equation of time period for simple harmonic motion, we get
${10^{ - 12}} = 2\pi \sqrt {\dfrac{{108 \times {{10}^{ - 3}}}}{{k \times 6.02 \times {{10}^{23}}}}} $
$ \Rightarrow k = 7.1\dfrac{N}{m}$
Hence, the correct option is (D).
Note: In the above question we should be careful with the values because molar mass is given but we need to find a force constant for a single atom. Also we should be careful about the units of all the individual quantities as the options are given in $\dfrac{N}{m}$ and to calculate in Newton the mass should be kilogram and not in grams.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main