Answer
Verified
87.3k+ views
Hint: In this solution, we will use the law of conservation of linear momentum. In the absence of an external force, the net momentum of a system remains conserved in all directions.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main