
A shell at rest at origin explodes into three fragments of masses 1 kg, 2 kg, and m kg. The fragments of masses 1 kg and 2 kg fly off with speeds \[12m/s\]along the x-axis and \[8m/s\]along the y-axis. If the m kg piece flies off with a speed of \[40m/s\]then find the total mass of the shell.
A) 4 kg
B) 5 kg
C) $3.5\,kg$
D) $4.5\,kg$
Answer
232.5k+ views
Hint: In this solution, we will use the law of conservation of linear momentum. In the absence of an external force, the net momentum of a system remains conserved in all directions.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

