Answer
Verified
87.3k+ views
Hint: First put the above values in the formula for induced emf in a conductor moving with a given velocity. One important thing to consider is that the emf induced only depends upon the ends of the conductor and not the shape. Then using Fleming’s right hand rule, we can determine which end will have high potential.
Formula used:
$\varepsilon = Bvl$ where $\varepsilon $is the emf induced in the conductor of length $l$ when it moves in a magnetic field $B$ with velocity $v$.
$\varepsilon = - \dfrac{{d\Phi }}{{dt}}$ where $\Phi $ is the magnetic flux linked with the conductor.
Complete step by step solution
When a conductor of length $l$ is moving with a constant velocity $v$ in a magnetic field $\overrightarrow B $, an emf or a potential difference is induced between the two ends of the conductor. This emf is given as,
$\varepsilon = Bvl$when the conductor moves in a direction perpendicular to the magnetic field
Taking $l = 2R$ as the induced emf only depends upon the ends of a conductor.
Therefore, $\varepsilon = 2BRv$
Another way of calculating the emf induced within the conductor is by taking the time derivative of the magnetic flux linked with the conductor, which is given as,
$\varepsilon = - \dfrac{{d\Phi }}{{dt}}$
The magnetic flux through the conductor is given as,
$\Phi = BA$$ = Bldx$
So, $\varepsilon = - 2BR\dfrac{{dx}}{{dt}}$ [As induced emf only depends upon the ends of a conductor, $l = 2R$]
$ \Rightarrow \varepsilon = - 2BRv$
Taking the absolute value we get,
$\varepsilon = 2BRv$
This is the emf induced in the semicircular loop PQ.
Now, by using Fleming’s right hand rule which states that if we stretch the right-hand thumb and two nearby fingers perpendicular to one another, and the first finger points in the direction of the magnetic field and the thumb is in the direction of motion of the conductor, then the middle finger will point in the direction of the induced current, we can show that P is at low potential and Q is at high potential.
So, the correct option is C.
Note: The direction of the induced emf, or the current, in any circuit is such as to oppose the cause that produces it. This is known as Lenz’s law.
Formula used:
$\varepsilon = Bvl$ where $\varepsilon $is the emf induced in the conductor of length $l$ when it moves in a magnetic field $B$ with velocity $v$.
$\varepsilon = - \dfrac{{d\Phi }}{{dt}}$ where $\Phi $ is the magnetic flux linked with the conductor.
Complete step by step solution
When a conductor of length $l$ is moving with a constant velocity $v$ in a magnetic field $\overrightarrow B $, an emf or a potential difference is induced between the two ends of the conductor. This emf is given as,
$\varepsilon = Bvl$when the conductor moves in a direction perpendicular to the magnetic field
Taking $l = 2R$ as the induced emf only depends upon the ends of a conductor.
Therefore, $\varepsilon = 2BRv$
Another way of calculating the emf induced within the conductor is by taking the time derivative of the magnetic flux linked with the conductor, which is given as,
$\varepsilon = - \dfrac{{d\Phi }}{{dt}}$
The magnetic flux through the conductor is given as,
$\Phi = BA$$ = Bldx$
So, $\varepsilon = - 2BR\dfrac{{dx}}{{dt}}$ [As induced emf only depends upon the ends of a conductor, $l = 2R$]
$ \Rightarrow \varepsilon = - 2BRv$
Taking the absolute value we get,
$\varepsilon = 2BRv$
This is the emf induced in the semicircular loop PQ.
Now, by using Fleming’s right hand rule which states that if we stretch the right-hand thumb and two nearby fingers perpendicular to one another, and the first finger points in the direction of the magnetic field and the thumb is in the direction of motion of the conductor, then the middle finger will point in the direction of the induced current, we can show that P is at low potential and Q is at high potential.
So, the correct option is C.
Note: The direction of the induced emf, or the current, in any circuit is such as to oppose the cause that produces it. This is known as Lenz’s law.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main