
A Satellite is in an elliptic orbit around the earth with an aphelion of $6 \mathrm{R}$ and
perihelion of $2 \mathrm{R}$. Find the eccentricity of the orbit.
A. $\dfrac{1}{6}$
B. $\dfrac{1}{3}$
C. $\dfrac{1}{2}$
D. $\dfrac{1}{4}$
Answer
218.7k+ views
Hint: We know that the maximum distance of load from the centre of column, such that if load acts within this distance there is no tension in the column. The maximum distance is called the Limit of eccentricity. Eccentricity measures how much the shape of Earth's orbit departs from a perfect circle. These variations affect the distance between Earth and the Sun. Because variations in Earth's eccentricity are fairly small, they're a relatively minor factor in annual seasonal climate variations. The orbital eccentricity (or eccentricity) is a measure of how much an elliptical orbit is 'squashed'. Elliptical orbits with increasing eccentricity from $\mathrm{e}=0$ (a circle) to $\mathrm{e}=0.95 .$ For a fixed value of the semi-major axis, as the eccentricity increases, both the semi-minor axis and perihelion distance decrease.
Complete step by step answer
We know that eccentricity is a measure of how an orbit deviates from circular. A perfectly circular orbit has an eccentricity of zero; higher numbers indicate more elliptical orbits. Neptune, Venus, and Earth are the planets in our solar system with the least eccentric orbits. In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. The eccentricity of a parabola is 1. The eccentricity of a hyperbola is greater than 1.
Let us consider that $\mathrm{r}_{\mathrm{a}}$ and $\mathrm{r}_{\mathrm{p}}$ denote distance of aphelion and perihelion of the
elliptical orbit of the satellite.
$\mathrm{r}_{\mathrm{a}}=\mathrm{a}(1+\mathrm{e})$ and $\mathrm{r}_{\mathrm{p}}=(1-\mathrm{e})(\mathrm{a}$ is semi major axis of ellipse)
As $\mathrm{r}_{\mathrm{a}}=\mathrm{bl}$ and $\mathrm{r}_{\mathrm{p}}=2 \mathrm{R}$
$\dfrac{\mathrm{a}(1+\mathrm{e})}{\mathrm{a}(1-\mathrm{e})}=\dfrac{6 \mathrm{R}}{2 \mathrm{R}}=3$ where $\mathrm{e}=\dfrac{1}{2}$
So, eccentricity $=\dfrac{1}{2}$
So, option C is correct.
Note: We know that gravitation is the attractive force existing between any two objects that have mass. The force of gravitation pulls objects together. Gravity is the gravitational force that occurs between the earth and other bodies. Gravity is the force acting to pull objects toward the earth. Gravity, also called gravitation, in mechanics, the universal force of attraction acting between all matter. On Earth all bodies have a weight, or downward force of gravity, proportional to their mass, which Earth's mass exerts on them. Gravity is measured by the acceleration that it gives to freely falling objects.
Complete step by step answer
We know that eccentricity is a measure of how an orbit deviates from circular. A perfectly circular orbit has an eccentricity of zero; higher numbers indicate more elliptical orbits. Neptune, Venus, and Earth are the planets in our solar system with the least eccentric orbits. In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. The eccentricity of an ellipse which is not a circle is greater than zero but less than 1. The eccentricity of a parabola is 1. The eccentricity of a hyperbola is greater than 1.
Let us consider that $\mathrm{r}_{\mathrm{a}}$ and $\mathrm{r}_{\mathrm{p}}$ denote distance of aphelion and perihelion of the
elliptical orbit of the satellite.
$\mathrm{r}_{\mathrm{a}}=\mathrm{a}(1+\mathrm{e})$ and $\mathrm{r}_{\mathrm{p}}=(1-\mathrm{e})(\mathrm{a}$ is semi major axis of ellipse)
As $\mathrm{r}_{\mathrm{a}}=\mathrm{bl}$ and $\mathrm{r}_{\mathrm{p}}=2 \mathrm{R}$
$\dfrac{\mathrm{a}(1+\mathrm{e})}{\mathrm{a}(1-\mathrm{e})}=\dfrac{6 \mathrm{R}}{2 \mathrm{R}}=3$ where $\mathrm{e}=\dfrac{1}{2}$
So, eccentricity $=\dfrac{1}{2}$
So, option C is correct.
Note: We know that gravitation is the attractive force existing between any two objects that have mass. The force of gravitation pulls objects together. Gravity is the gravitational force that occurs between the earth and other bodies. Gravity is the force acting to pull objects toward the earth. Gravity, also called gravitation, in mechanics, the universal force of attraction acting between all matter. On Earth all bodies have a weight, or downward force of gravity, proportional to their mass, which Earth's mass exerts on them. Gravity is measured by the acceleration that it gives to freely falling objects.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

