
A rope ladder of length \[L\] is attached to a balloon of mass \[M\]. As the man of mass \[m\]climbs the ladder into the balloon basket, the balloon comes down by a vertical distance \[s\]. Then the increase in potential energy of man divided by the increase in potential energy of balloon is

A) \[\dfrac{{L - s}}{s}\]
B) $\dfrac{L}{s}$
C) $\dfrac{s}{{L - s}}$
D) $L - s$
Answer
219k+ views
Hint: The potential energy of an object is due to its position with respect to the surface form the heart. When an object rises, its potential energy increases, and when it falls, its potential energy increases.
Formula used: In this solution, we will use the following formula:
Potential energy of an object $U = mgh$ where $m$ is the mass of the object $g$ is the gravitational acceleration and $h$ is the height
Complete step by step answer:
In the scenario given to us, the man is climbing the ladder of the balloon. When the man climbs the ladder his height increases with respect to the ground. As a result, the potential energy of the man also increases.
Since the balloon also drops by a vertical distance $s$ when the man is climbing the ladder, the net change in height of man when he has climbed the ladder will be $l - s$.
Hence the change in potential energy of the man will be
${U_m} = mg(l - s)$
This change in potential energy will be compensated by the work done by the man and the change in potential energy of the balloon, so we can write
${U_B} = W + {U_M}$
S, the work done by the man will be the product of the force acting on him $(mg)$ and the displacement of the man $(l)$.
\[{U_B} = mgl + mg(l - s)\]
\[ \Rightarrow {U_B} = mgs\]
Hence the ratio of the changes in potential energy will be
$\dfrac{{{U_m}}}{{{U_B}}} = \dfrac{{mg(l - s)}}{{mgs}}$
Which gives us
$\dfrac{{{U_m}}}{{{U_B}}} = \dfrac{{l - s}}{s}$
Hence the correct choice is option (A).
Note: It is easy to expect that the change in potential energy of the man will be directly equal to the change in potential energy of the balloon, however that is not the case, since the man does work on the balloon when he climbs it which has to be taken into account. Additionally, we must be careful while calculating the change in height of the man as $(l - s)$ and not $(s)$.
Formula used: In this solution, we will use the following formula:
Potential energy of an object $U = mgh$ where $m$ is the mass of the object $g$ is the gravitational acceleration and $h$ is the height
Complete step by step answer:
In the scenario given to us, the man is climbing the ladder of the balloon. When the man climbs the ladder his height increases with respect to the ground. As a result, the potential energy of the man also increases.
Since the balloon also drops by a vertical distance $s$ when the man is climbing the ladder, the net change in height of man when he has climbed the ladder will be $l - s$.
Hence the change in potential energy of the man will be
${U_m} = mg(l - s)$
This change in potential energy will be compensated by the work done by the man and the change in potential energy of the balloon, so we can write
${U_B} = W + {U_M}$
S, the work done by the man will be the product of the force acting on him $(mg)$ and the displacement of the man $(l)$.
\[{U_B} = mgl + mg(l - s)\]
\[ \Rightarrow {U_B} = mgs\]
Hence the ratio of the changes in potential energy will be
$\dfrac{{{U_m}}}{{{U_B}}} = \dfrac{{mg(l - s)}}{{mgs}}$
Which gives us
$\dfrac{{{U_m}}}{{{U_B}}} = \dfrac{{l - s}}{s}$
Hence the correct choice is option (A).
Note: It is easy to expect that the change in potential energy of the man will be directly equal to the change in potential energy of the balloon, however that is not the case, since the man does work on the balloon when he climbs it which has to be taken into account. Additionally, we must be careful while calculating the change in height of the man as $(l - s)$ and not $(s)$.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

Understanding Electromagnetic Waves and Their Importance

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

Other Pages
NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Understanding Elastic Collisions in Two Dimensions

