
A roller of mass $300kg$ and of radius $50cm$ lying on the horizontal floor is resting against a step of height $20cm$. The minimum horizontal force to be applied on the roller passing through its centre to turn the roller on to the step is:
(A) $950N$
(B) $1960N$
(C) $2940N$
(D) $3920N$
Answer
233.1k+ views
Hint: To solve this problem, we need to equate the values of the torque. Then from the values given in the question and substituting them in the equation we will get the values of the force.
Formulas used: We will be using the formulas to balance the existing forces on the roller, $\tau = F \times {r_ \bot }$ , where $\tau $ is the torque experienced by a point, $F$ is the force experienced by the object to produce the torque, and ${r_ \bot }$ is the distance perpendicular to the force applied.
Complete Step by Step answer:
We know that a body that is spherical in shape when applied a force will travel in a linear and rolling motion simultaneously. When the body is performing rolling motion it experiences a torque. Also, we know that the body experiences motion only when the forces acting on it are not completely balanced.
Considering the above situation,
We can see that the edge of the step is around $30cm$ from the center of the roller. Also a force $F$ is being applied on the roller to help it role through the step. Also the highest point on the step that stands at $20cm$ from the circumference of the sphere experiences a torque. The other force acting on the roller in this rotational frame is the gravitational force. The body experiences motion in the desired direction only when the torque is either balanced or exceeded.
The torque due to force $F$ will be $\tau = F \times 30$ . Similarly the torque due to the gravitational force of the body will be, $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ Since the forces are required to either be balanced or exceeding to experience motion,
$F \times 30 = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $
$F \times 30 = mg\left( {40} \right)$
Substituting the values of $m = 300kg$ and $g = 9.8m/{s^2}$ , $F \times 30 = 300 \times 9.8 \times \left( {40} \right)$
Solving for $F$ we get,
$F = \dfrac{{300 \times 9.8 \times \left( {40} \right)}}{{30}}$
$ \Rightarrow F = 3920N$
Thus, the minimum force required to move the roller through the step will be $F = 3920N$ .
Hence the correct answer is option D.
Note: We have used $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ above because we know the torque is product of distance and the force acting perpendicular to it. The force $mg$ acts perpendicular to, the right-angled leg of the triangular formed by joining the two vectors.
Formulas used: We will be using the formulas to balance the existing forces on the roller, $\tau = F \times {r_ \bot }$ , where $\tau $ is the torque experienced by a point, $F$ is the force experienced by the object to produce the torque, and ${r_ \bot }$ is the distance perpendicular to the force applied.
Complete Step by Step answer:
We know that a body that is spherical in shape when applied a force will travel in a linear and rolling motion simultaneously. When the body is performing rolling motion it experiences a torque. Also, we know that the body experiences motion only when the forces acting on it are not completely balanced.
Considering the above situation,
We can see that the edge of the step is around $30cm$ from the center of the roller. Also a force $F$ is being applied on the roller to help it role through the step. Also the highest point on the step that stands at $20cm$ from the circumference of the sphere experiences a torque. The other force acting on the roller in this rotational frame is the gravitational force. The body experiences motion in the desired direction only when the torque is either balanced or exceeded.
The torque due to force $F$ will be $\tau = F \times 30$ . Similarly the torque due to the gravitational force of the body will be, $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ Since the forces are required to either be balanced or exceeding to experience motion,
$F \times 30 = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $
$F \times 30 = mg\left( {40} \right)$
Substituting the values of $m = 300kg$ and $g = 9.8m/{s^2}$ , $F \times 30 = 300 \times 9.8 \times \left( {40} \right)$
Solving for $F$ we get,
$F = \dfrac{{300 \times 9.8 \times \left( {40} \right)}}{{30}}$
$ \Rightarrow F = 3920N$
Thus, the minimum force required to move the roller through the step will be $F = 3920N$ .
Hence the correct answer is option D.
Note: We have used $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ above because we know the torque is product of distance and the force acting perpendicular to it. The force $mg$ acts perpendicular to, the right-angled leg of the triangular formed by joining the two vectors.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

