
A roller of mass $300kg$ and of radius $50cm$ lying on the horizontal floor is resting against a step of height $20cm$. The minimum horizontal force to be applied on the roller passing through its centre to turn the roller on to the step is:
(A) $950N$
(B) $1960N$
(C) $2940N$
(D) $3920N$
Answer
218.4k+ views
Hint: To solve this problem, we need to equate the values of the torque. Then from the values given in the question and substituting them in the equation we will get the values of the force.
Formulas used: We will be using the formulas to balance the existing forces on the roller, $\tau = F \times {r_ \bot }$ , where $\tau $ is the torque experienced by a point, $F$ is the force experienced by the object to produce the torque, and ${r_ \bot }$ is the distance perpendicular to the force applied.
Complete Step by Step answer:
We know that a body that is spherical in shape when applied a force will travel in a linear and rolling motion simultaneously. When the body is performing rolling motion it experiences a torque. Also, we know that the body experiences motion only when the forces acting on it are not completely balanced.
Considering the above situation,
We can see that the edge of the step is around $30cm$ from the center of the roller. Also a force $F$ is being applied on the roller to help it role through the step. Also the highest point on the step that stands at $20cm$ from the circumference of the sphere experiences a torque. The other force acting on the roller in this rotational frame is the gravitational force. The body experiences motion in the desired direction only when the torque is either balanced or exceeded.
The torque due to force $F$ will be $\tau = F \times 30$ . Similarly the torque due to the gravitational force of the body will be, $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ Since the forces are required to either be balanced or exceeding to experience motion,
$F \times 30 = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $
$F \times 30 = mg\left( {40} \right)$
Substituting the values of $m = 300kg$ and $g = 9.8m/{s^2}$ , $F \times 30 = 300 \times 9.8 \times \left( {40} \right)$
Solving for $F$ we get,
$F = \dfrac{{300 \times 9.8 \times \left( {40} \right)}}{{30}}$
$ \Rightarrow F = 3920N$
Thus, the minimum force required to move the roller through the step will be $F = 3920N$ .
Hence the correct answer is option D.
Note: We have used $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ above because we know the torque is product of distance and the force acting perpendicular to it. The force $mg$ acts perpendicular to, the right-angled leg of the triangular formed by joining the two vectors.
Formulas used: We will be using the formulas to balance the existing forces on the roller, $\tau = F \times {r_ \bot }$ , where $\tau $ is the torque experienced by a point, $F$ is the force experienced by the object to produce the torque, and ${r_ \bot }$ is the distance perpendicular to the force applied.
Complete Step by Step answer:
We know that a body that is spherical in shape when applied a force will travel in a linear and rolling motion simultaneously. When the body is performing rolling motion it experiences a torque. Also, we know that the body experiences motion only when the forces acting on it are not completely balanced.
Considering the above situation,
We can see that the edge of the step is around $30cm$ from the center of the roller. Also a force $F$ is being applied on the roller to help it role through the step. Also the highest point on the step that stands at $20cm$ from the circumference of the sphere experiences a torque. The other force acting on the roller in this rotational frame is the gravitational force. The body experiences motion in the desired direction only when the torque is either balanced or exceeded.
The torque due to force $F$ will be $\tau = F \times 30$ . Similarly the torque due to the gravitational force of the body will be, $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ Since the forces are required to either be balanced or exceeding to experience motion,
$F \times 30 = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $
$F \times 30 = mg\left( {40} \right)$
Substituting the values of $m = 300kg$ and $g = 9.8m/{s^2}$ , $F \times 30 = 300 \times 9.8 \times \left( {40} \right)$
Solving for $F$ we get,
$F = \dfrac{{300 \times 9.8 \times \left( {40} \right)}}{{30}}$
$ \Rightarrow F = 3920N$
Thus, the minimum force required to move the roller through the step will be $F = 3920N$ .
Hence the correct answer is option D.
Note: We have used $\tau = mg \times \sqrt {{{\left( {50} \right)}^2} - {{\left( {30} \right)}^2}} $ above because we know the torque is product of distance and the force acting perpendicular to it. The force $mg$ acts perpendicular to, the right-angled leg of the triangular formed by joining the two vectors.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

