
A rod AB of length $4$ units moves horizontally when its left end A always on the circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$, then the locus of the other end B is
A ${x^2} + {y^2} - 12x - 8y + 3 = 0$
B ${x^2} + {y^2} - 12x - 8y + 3 = 0$
C ${x^2} + {y^2} + 4x - 8y - 29 = 0$
D ${x^2} + {y^2} - 4x - 16y + 19 = 0$
Answer
164.4k+ views
Hint: Given, a rod AB of length $4$units moves horizontally when its left end A always on the circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$, First we will find the center of the circle and the radius of the circle. Then we will find the center and radius of the locus of B. With the help of the new center and radius to get the equation locus of B.
Complete step by step solution:
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Complete step by step solution: Given, a rod AB of length $4$units moves horizontally when its left end A always on the circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$
Equation of circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$
Adding $4,81$ on both sides
${x^2} + {y^2} - 4x - 18y - 29 + 4 + 81 = 81 + 4$
Further solving above equation
${(x - 2)^2} + {(x - 3)^2} - 29 = 85$
Shifting constant term on one side
${(x - 2)^2} + {(x - 3)^2} = 114$
Equation of circle
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Comparing with this equation
${x_0} = 2,\,{y_0} = 9,\,r = \sqrt {114} $
So, Center of the circle $(2,9)$ and radius is $\sqrt {114} $
A rod of 4 units length with its left end and A is always on the given circle.
Then, the radius of the new circle will be the same. As it moves horizontally, the center of the new circle shifts by 4 units in x coordinates.
Hence, center of new circle is $(2 + 4,9)$
On simplifying center is $(6,9)$
Radius will be same $\sqrt {114} $
Now, the locus of B is the equation of new circle having center $(6,9)$ and radius $\sqrt {114} $
General equation of circle
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Now, ${x_0} = 6,\,{y_0} = 9,\,r = \sqrt {114} $
Putting these values in above equation
${(x - 6)^2} + {(y - 9)^2} = {\left( {\sqrt {114} } \right)^2}$
Using this identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$
${x^2} + 36 - 12x + {y^2} + 81 - 18y = 114$
After simplifying above equation
${x^2} - 12x + {y^2} - 18y + 117 = 114$
Shifting variables on one sides and constants on other side
${x^2} - 12x + {y^2} - 18y = 114 - 117$
After simplifying the above equation
${x^2} - 12x + {y^2} - 18y = - 3$
Shifting $ - 3$ on the other side
${x^2} + {y^2} - 12x - 18y + 3 = 0$
Option ‘A’ is correct
Note: Remember that locus is nothing but another circle of same radius as the given circle
Complete step by step solution:
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Complete step by step solution: Given, a rod AB of length $4$units moves horizontally when its left end A always on the circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$
Equation of circle ${x^2} + {y^2} - 4x - 18y - 29 = 0$
Adding $4,81$ on both sides
${x^2} + {y^2} - 4x - 18y - 29 + 4 + 81 = 81 + 4$
Further solving above equation
${(x - 2)^2} + {(x - 3)^2} - 29 = 85$
Shifting constant term on one side
${(x - 2)^2} + {(x - 3)^2} = 114$
Equation of circle
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Comparing with this equation
${x_0} = 2,\,{y_0} = 9,\,r = \sqrt {114} $
So, Center of the circle $(2,9)$ and radius is $\sqrt {114} $
A rod of 4 units length with its left end and A is always on the given circle.
Then, the radius of the new circle will be the same. As it moves horizontally, the center of the new circle shifts by 4 units in x coordinates.
Hence, center of new circle is $(2 + 4,9)$
On simplifying center is $(6,9)$
Radius will be same $\sqrt {114} $
Now, the locus of B is the equation of new circle having center $(6,9)$ and radius $\sqrt {114} $
General equation of circle
${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Now, ${x_0} = 6,\,{y_0} = 9,\,r = \sqrt {114} $
Putting these values in above equation
${(x - 6)^2} + {(y - 9)^2} = {\left( {\sqrt {114} } \right)^2}$
Using this identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$
${x^2} + 36 - 12x + {y^2} + 81 - 18y = 114$
After simplifying above equation
${x^2} - 12x + {y^2} - 18y + 117 = 114$
Shifting variables on one sides and constants on other side
${x^2} - 12x + {y^2} - 18y = 114 - 117$
After simplifying the above equation
${x^2} - 12x + {y^2} - 18y = - 3$
Shifting $ - 3$ on the other side
${x^2} + {y^2} - 12x - 18y + 3 = 0$
Option ‘A’ is correct
Note: Remember that locus is nothing but another circle of same radius as the given circle
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
