
A rocket consumes 20 kg fuel per second. The exhaust gases escape at a speed at $1000\;m{s^{ - 1}}$ relative to the rocket. Calculate the velocity acquired by the rocket, when its mass reduces to $1/100$ of its initial mass.
A) 4.5 km/sec
B) 4.6 km/sec
C) 4.06 km/sec
D) 4.05 km/sec
Answer
225k+ views
Hint: The rocket propels upwards due to the thrust produced by the burning of the fuel. This thrust onto the ground causes a force upwards which propels the rocket upwards. Due to the force acting upwards the rocket will be accelerated upwards. This up thrust is produced by the burning of fuel in the rocket.
Complete step by step answer:
The velocity V acquired when the final mass is $1/100$ of the initial mass is :
$V = u\ln \left( {\dfrac{M}{m}} \right)$
Here u is the initial velocity, m is the final mass and M is the initial mass.
$\begin{array}{l}
V = 1000\;\ln \left( {100} \right)\\
= 4606\;m/s\\
= 4.6\;km/s
\end{array}$
Therefore, the correct option is (B).
Additional Information: To understand the science behind the Rocket, you can take an example of a gunshot. Shooting a gun also demonstrates the application of conservation of momentum. As we pull the trigger, the bullet comes out at a very high speed, but we also observe a recoil of the gun. This happens to conserve momentum. The momentum gained by the bullet is equal to and also the reason for the recoil of the gun. Same as this, the gases inside a rocket are made to propel out of the Rocket at a very high speed. This, in turn, gives a push to the rocket in the opposite direction to conserve the momentum. Thus a lot of fuel needs to be burned to provide the rocket a sufficient amount of force to escape the earth's atmosphere.
Note: The force that propels the rocket upwards is the consequence of Newton’s Third Law. The force of thrust on to the ground and the force on the rocket is a Newtonian pair of forces which are equal and opposite. The force acting as thrust is due to the mass dissipation of the fuel per time which with the velocity of the exhaust produces a thrust force is responsible for the propulsion.
Complete step by step answer:
The velocity V acquired when the final mass is $1/100$ of the initial mass is :
$V = u\ln \left( {\dfrac{M}{m}} \right)$
Here u is the initial velocity, m is the final mass and M is the initial mass.
$\begin{array}{l}
V = 1000\;\ln \left( {100} \right)\\
= 4606\;m/s\\
= 4.6\;km/s
\end{array}$
Therefore, the correct option is (B).
Additional Information: To understand the science behind the Rocket, you can take an example of a gunshot. Shooting a gun also demonstrates the application of conservation of momentum. As we pull the trigger, the bullet comes out at a very high speed, but we also observe a recoil of the gun. This happens to conserve momentum. The momentum gained by the bullet is equal to and also the reason for the recoil of the gun. Same as this, the gases inside a rocket are made to propel out of the Rocket at a very high speed. This, in turn, gives a push to the rocket in the opposite direction to conserve the momentum. Thus a lot of fuel needs to be burned to provide the rocket a sufficient amount of force to escape the earth's atmosphere.
Note: The force that propels the rocket upwards is the consequence of Newton’s Third Law. The force of thrust on to the ground and the force on the rocket is a Newtonian pair of forces which are equal and opposite. The force acting as thrust is due to the mass dissipation of the fuel per time which with the velocity of the exhaust produces a thrust force is responsible for the propulsion.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

