
A rocket consumes 20 kg fuel per second. The exhaust gases escape at a speed at $1000\;m{s^{ - 1}}$ relative to the rocket. Calculate the velocity acquired by the rocket, when its mass reduces to $1/100$ of its initial mass.
A) 4.5 km/sec
B) 4.6 km/sec
C) 4.06 km/sec
D) 4.05 km/sec
Answer
126.9k+ views
Hint: The rocket propels upwards due to the thrust produced by the burning of the fuel. This thrust onto the ground causes a force upwards which propels the rocket upwards. Due to the force acting upwards the rocket will be accelerated upwards. This up thrust is produced by the burning of fuel in the rocket.
Complete step by step answer:
The velocity V acquired when the final mass is $1/100$ of the initial mass is :
$V = u\ln \left( {\dfrac{M}{m}} \right)$
Here u is the initial velocity, m is the final mass and M is the initial mass.
$\begin{array}{l}
V = 1000\;\ln \left( {100} \right)\\
= 4606\;m/s\\
= 4.6\;km/s
\end{array}$
Therefore, the correct option is (B).
Additional Information: To understand the science behind the Rocket, you can take an example of a gunshot. Shooting a gun also demonstrates the application of conservation of momentum. As we pull the trigger, the bullet comes out at a very high speed, but we also observe a recoil of the gun. This happens to conserve momentum. The momentum gained by the bullet is equal to and also the reason for the recoil of the gun. Same as this, the gases inside a rocket are made to propel out of the Rocket at a very high speed. This, in turn, gives a push to the rocket in the opposite direction to conserve the momentum. Thus a lot of fuel needs to be burned to provide the rocket a sufficient amount of force to escape the earth's atmosphere.
Note: The force that propels the rocket upwards is the consequence of Newton’s Third Law. The force of thrust on to the ground and the force on the rocket is a Newtonian pair of forces which are equal and opposite. The force acting as thrust is due to the mass dissipation of the fuel per time which with the velocity of the exhaust produces a thrust force is responsible for the propulsion.
Complete step by step answer:
The velocity V acquired when the final mass is $1/100$ of the initial mass is :
$V = u\ln \left( {\dfrac{M}{m}} \right)$
Here u is the initial velocity, m is the final mass and M is the initial mass.
$\begin{array}{l}
V = 1000\;\ln \left( {100} \right)\\
= 4606\;m/s\\
= 4.6\;km/s
\end{array}$
Therefore, the correct option is (B).
Additional Information: To understand the science behind the Rocket, you can take an example of a gunshot. Shooting a gun also demonstrates the application of conservation of momentum. As we pull the trigger, the bullet comes out at a very high speed, but we also observe a recoil of the gun. This happens to conserve momentum. The momentum gained by the bullet is equal to and also the reason for the recoil of the gun. Same as this, the gases inside a rocket are made to propel out of the Rocket at a very high speed. This, in turn, gives a push to the rocket in the opposite direction to conserve the momentum. Thus a lot of fuel needs to be burned to provide the rocket a sufficient amount of force to escape the earth's atmosphere.
Note: The force that propels the rocket upwards is the consequence of Newton’s Third Law. The force of thrust on to the ground and the force on the rocket is a Newtonian pair of forces which are equal and opposite. The force acting as thrust is due to the mass dissipation of the fuel per time which with the velocity of the exhaust produces a thrust force is responsible for the propulsion.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

JEE Main Course 2025: Get All the Relevant Details

Elastic Collisions in One Dimension - JEE Important Topic
