
A road is $10m$ wide. Its radius of curvature is $50m.$The outer edge is above the lower edge by a distance of $1.5m$. This road is most suited for the velocity:
A) $2.5m{s^{ - 1}}$
B) $4.5m{s^{ - 1}}$
C) $6.5m{s^{ - 1}}$
D) $8.5m{s^{ - 1}}$
Answer
221.1k+ views
Hint: This question is directly formula based. Since, in the question, radius of curvature is given, so here in this case we need to use the formula of velocity profile directly. After that we can directly get the solution for the given question.
Complete step by step solution:
As, in the given question, width of the road is given, $L = 10cm$
Radius or curvature, $R = 50cm$
The distance between the above and lower edge of the road, $h = 1.5m$
If a body is moving on the road, then a force will be acting on the body and a downward force due to its weight will also act on the body. There will be components of the force which will act on the body which is moving on the with a velocity on the road, which is given as,
$N\sin \theta = \dfrac{{m{v^2}}}{R}$………………(i)
And $N\cos \theta = mg$…………………(ii)
Now, when we divide equation (i) by (ii), we get,
$\tan \theta = \dfrac{{{v^2}}}{{gR}}$
Now, for most suited velocity, we can use the formula for velocity profile,
$v = \sqrt {gR\tan \theta } $………………(iii)
Also, we know that $\tan \theta = \dfrac{h}{L}$
Now, we need to put the values in equation (iii)
So, we will get, $v = \sqrt {10 \times 50 \times \dfrac{{1.5}}{{10}}} $
$ \Rightarrow v = \sqrt {50 \times 1.5} $
$ \Rightarrow v = \sqrt {75} $
$\therefore v = 8.5m{s^{ - 1}}$
Hence, option (D), i.e. $8.5m{s^{ - 1}}$ is the correct answer for the given question.
Note: Here, in this question, the angle of inclination is not given. But the width of the road and the distance between the upper edge and the lower edge is given, so we used the relation$\tan \theta = \dfrac{h}{L}$. If the angle would be given then directly we can use the value of$\tan \theta $. Now, the equation of velocity is given by$v = \sqrt {gR\tan \theta } $.
Complete step by step solution:
As, in the given question, width of the road is given, $L = 10cm$
Radius or curvature, $R = 50cm$
The distance between the above and lower edge of the road, $h = 1.5m$
If a body is moving on the road, then a force will be acting on the body and a downward force due to its weight will also act on the body. There will be components of the force which will act on the body which is moving on the with a velocity on the road, which is given as,
$N\sin \theta = \dfrac{{m{v^2}}}{R}$………………(i)
And $N\cos \theta = mg$…………………(ii)
Now, when we divide equation (i) by (ii), we get,
$\tan \theta = \dfrac{{{v^2}}}{{gR}}$
Now, for most suited velocity, we can use the formula for velocity profile,
$v = \sqrt {gR\tan \theta } $………………(iii)
Also, we know that $\tan \theta = \dfrac{h}{L}$
Now, we need to put the values in equation (iii)
So, we will get, $v = \sqrt {10 \times 50 \times \dfrac{{1.5}}{{10}}} $
$ \Rightarrow v = \sqrt {50 \times 1.5} $
$ \Rightarrow v = \sqrt {75} $
$\therefore v = 8.5m{s^{ - 1}}$
Hence, option (D), i.e. $8.5m{s^{ - 1}}$ is the correct answer for the given question.
Note: Here, in this question, the angle of inclination is not given. But the width of the road and the distance between the upper edge and the lower edge is given, so we used the relation$\tan \theta = \dfrac{h}{L}$. If the angle would be given then directly we can use the value of$\tan \theta $. Now, the equation of velocity is given by$v = \sqrt {gR\tan \theta } $.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

