A right-angled prism made from a material of refractive index $\mu $ is kept in air. A ray PQ is incident normally on the side AB of the prism. Find (in terms of $\mu $ ) the maximum value of $\theta $ up to which this incident ray necessarily undergoes total internal reflection at the face AC of the prism.
Answer
Verified
119.4k+ views
Hint:In this question, we know that if the angle between two lines is the same as the angle between their perpendiculars and one angle of right angles prism is always $90^\circ $. The angle of incidence should be minimum for total internal reflection.
Complete step by step solution:
In this question we have given that a right-angled prism has the refractive index $\mu $. We need to calculate the maximum value of $\theta $ up to which this incident ray necessarily undergoes total internal reflection at the face AC of the prism.
In this question let us assume that the angle of incidence is $i$ and the angle of incidence is incident on $AC$.
The angle between two lines is same as the angle between their perpendiculars so we can write,
$i = A$
Since the prism is right angled, we can write,
\[ \Rightarrow \theta = \dfrac{\pi }{2} - A\]
Since $i = A$ we can write,
$ \Rightarrow \theta = \dfrac{\pi }{2} - i......\left( 1 \right)$
We know that refractive index is expressed as,
$\mu = \dfrac{1}{{\sin i}}$
As we know that the angle of incidence should be minimum for the total internal reflection,
${i_c} = {\sin ^{ - 1}}\dfrac{1}{\mu }......\left( 2 \right)$
Here, ${i_c}$ is a critical angle.
Now the maximum value of $\theta $ for total internal expression can be calculated by substituting the expression of ${i_c}$ to the equation (1) as,
$ \Rightarrow \theta = \dfrac{\pi }{2} - {i_C}$
Now we substitute the value of critical angle as expressed in equation (2) in above equation to get the maximum value of $\theta $.
$\therefore {\theta _{\max }} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\dfrac{1}{\mu }$
Therefore, the maximum value will be ${\theta _{\max }} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\dfrac{1}{\mu }$.
Note:As we know that the minimum angle for total internal reflection is the critical angle. The angle of the right-angled prism is $90^\circ $. The maximum value of $\theta $ is calculated corresponding to the minimum value of $i$.
Complete step by step solution:
In this question we have given that a right-angled prism has the refractive index $\mu $. We need to calculate the maximum value of $\theta $ up to which this incident ray necessarily undergoes total internal reflection at the face AC of the prism.
In this question let us assume that the angle of incidence is $i$ and the angle of incidence is incident on $AC$.
The angle between two lines is same as the angle between their perpendiculars so we can write,
$i = A$
Since the prism is right angled, we can write,
\[ \Rightarrow \theta = \dfrac{\pi }{2} - A\]
Since $i = A$ we can write,
$ \Rightarrow \theta = \dfrac{\pi }{2} - i......\left( 1 \right)$
We know that refractive index is expressed as,
$\mu = \dfrac{1}{{\sin i}}$
As we know that the angle of incidence should be minimum for the total internal reflection,
${i_c} = {\sin ^{ - 1}}\dfrac{1}{\mu }......\left( 2 \right)$
Here, ${i_c}$ is a critical angle.
Now the maximum value of $\theta $ for total internal expression can be calculated by substituting the expression of ${i_c}$ to the equation (1) as,
$ \Rightarrow \theta = \dfrac{\pi }{2} - {i_C}$
Now we substitute the value of critical angle as expressed in equation (2) in above equation to get the maximum value of $\theta $.
$\therefore {\theta _{\max }} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\dfrac{1}{\mu }$
Therefore, the maximum value will be ${\theta _{\max }} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\dfrac{1}{\mu }$.
Note:As we know that the minimum angle for total internal reflection is the critical angle. The angle of the right-angled prism is $90^\circ $. The maximum value of $\theta $ is calculated corresponding to the minimum value of $i$.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Charging and Discharging of Capacitor
JEE Main Chemistry Exam Pattern 2025
Degree of Dissociation and Its Formula With Solved Example for JEE