
A rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away. How high above the target must the gun be aimed so that the bullet hits the target?
(A) $2.02inch$
(B) $1.72inch$
(C) $1.82inch$
(D) $1.92inch$
Answer
221.1k+ views
Hint: Always watch the sign convention when using Newton’s equations of motion. The acceleration is equal to acceleration due to gravity.
Formula Used: The formulae used in the solution are given here.
$S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
Complete Step by Step Solution: It has been given that, a rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away.
Muzzle velocity is the speed of a projectile (bullet, pellet, slug, ball/shots or shell) with respect to the muzzle at the moment it leaves the end of a gun's barrel (i.e. the muzzle). So, this is a case of projectile motion.
According to Newton’s law of motion, we have, $S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
The time taken to reach target by bullet = $t = \dfrac{{distance}}{{speed}} = \dfrac{{150}}{{1500}} = 0.1s$
Since we have motion in both the x-direction and the y-direction, write Newton’s equation in the y-direction since we are interested in how long the object is in the air. Use subscripts to help:
${S_{\left( y \right)}} = ut + \dfrac{1}{2}{a_y}{t^2}$.
Here, ${a_y} = g$. Thus, displacement along vertical (y) direction is given by,
${S_{\left( y \right)}} = 0 + \dfrac{1}{2} \times 9.8 \times {0.1^2}$ since
${S_{\left( y \right)}} = 0.049cm = 1.92inch$.
Hence the correct answer is Option D.
Note: It is assumed that the air resistance is negligible. Thus the result is only applicable when air resistance is zero. It is given that the air resistance is negligible, so the air resistance is left out from the equation.
Formula Used: The formulae used in the solution are given here.
$S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
Complete Step by Step Solution: It has been given that, a rifle with a muzzle velocity $1500ft{s^{ - 1}}$ shoots a bullet at a small target 150ft away.
Muzzle velocity is the speed of a projectile (bullet, pellet, slug, ball/shots or shell) with respect to the muzzle at the moment it leaves the end of a gun's barrel (i.e. the muzzle). So, this is a case of projectile motion.
According to Newton’s law of motion, we have, $S = ut + \dfrac{1}{2}a{t^2}$ where $S$ is the distance, $u$ is the initial velocity, $t$ is the time taken and $a$ is the acceleration, where $a = g$, acceleration due to gravity.
The time taken to reach target by bullet = $t = \dfrac{{distance}}{{speed}} = \dfrac{{150}}{{1500}} = 0.1s$
Since we have motion in both the x-direction and the y-direction, write Newton’s equation in the y-direction since we are interested in how long the object is in the air. Use subscripts to help:
${S_{\left( y \right)}} = ut + \dfrac{1}{2}{a_y}{t^2}$.
Here, ${a_y} = g$. Thus, displacement along vertical (y) direction is given by,
${S_{\left( y \right)}} = 0 + \dfrac{1}{2} \times 9.8 \times {0.1^2}$ since
${S_{\left( y \right)}} = 0.049cm = 1.92inch$.
Hence the correct answer is Option D.
Note: It is assumed that the air resistance is negligible. Thus the result is only applicable when air resistance is zero. It is given that the air resistance is negligible, so the air resistance is left out from the equation.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

