
A radioactive isotope X with half life \[1.5 \times {10^9}\]years decays into a stable nucleus Y. A rock sample contains both elements X and Y in ratio 1:15. Find the age of the rock.
Answer
146.1k+ views
Hint: To answer this question we must understand the concept of half life. We should also know how the concentration of reactants and rate of reaction affects the half life. We can put in the values in the following equation to get our desired result.
\[{N_{(t)}} = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
Complete step by step solution:
During natural radioactive decay, not all atoms of an element are instantaneously changed to atoms of another element instead the decay process takes a long time. Sometimes the reaction never reaches completion. Here, it is important to note the concept of half life. It is the time in which the initial concentration is decayed and reduced to half.
From the question we can see that the half life is \[1.5 \times {10^9}\]
And X and Y are present in the ratio 1:15
Thus, we can write Y=15X
Let us assume Z to be the amount of radioactive isotope X initially present.
Therefore, X+Y=Z
$\Rightarrow $ X + 15X = Z
$\Rightarrow $ 16X = Z
Hence, \[\dfrac{Z}{X} = 16\]
We know that for second order reactions,
\[\lambda t = 2.303\log \dfrac{Z}{X}\]; where t is the age of the rock and lambda represents the decay constant which is the natural logarithmic value of 2 =0.693.
Substituting the values we have obtained so far,
\[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303\log 16\]
Or, \[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303 \times 1.204\]
Therefore,
\[t = 6 \times {10^9}years\]
Hence, the answer is \[6 \times {10^9}years\].
Note: Radioactive dating utilizes the concept of half life and radioactive decay. It is a process by which the approximate age of an object is determined through the use of certain radioactive nuclides.
\[{N_{(t)}} = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
Complete step by step solution:
During natural radioactive decay, not all atoms of an element are instantaneously changed to atoms of another element instead the decay process takes a long time. Sometimes the reaction never reaches completion. Here, it is important to note the concept of half life. It is the time in which the initial concentration is decayed and reduced to half.
From the question we can see that the half life is \[1.5 \times {10^9}\]
And X and Y are present in the ratio 1:15
Thus, we can write Y=15X
Let us assume Z to be the amount of radioactive isotope X initially present.
Therefore, X+Y=Z
$\Rightarrow $ X + 15X = Z
$\Rightarrow $ 16X = Z
Hence, \[\dfrac{Z}{X} = 16\]
We know that for second order reactions,
\[\lambda t = 2.303\log \dfrac{Z}{X}\]; where t is the age of the rock and lambda represents the decay constant which is the natural logarithmic value of 2 =0.693.
Substituting the values we have obtained so far,
\[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303\log 16\]
Or, \[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303 \times 1.204\]
Therefore,
\[t = 6 \times {10^9}years\]
Hence, the answer is \[6 \times {10^9}years\].
Note: Radioactive dating utilizes the concept of half life and radioactive decay. It is a process by which the approximate age of an object is determined through the use of certain radioactive nuclides.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
