
A proton is accelerating in a cyclotron where the applied magnetic field is 2 T. If the potential gap is effectively 100 KV then how much revolutions the proton has to make between the “dees” to acquire a kinetic energy of 20 MeV?
${\text{A}}{\text{.}}$ 100
${\text{B}}{\text{.}}$ 150
${\text{C}}{\text{.}}$ 200
${\text{D}}{\text{.}}$ 300
Answer
232.8k+ views
- Hint- Here, we will proceed by finding all the values included in the given data in SI units. Then, we will be using the formula for the kinetic energy acquired by a charge when it is revolving between the dees i.e., ${\text{KE}} = 2NqV$.
Complete step-by-step solution -
Given, Magnetic field, B = 2 T
Potential difference, V = 100 KV = 100$ \times $1000 V = ${10^5}$ V
Charge of any proton is simply charge corresponding to an electron i.e., q = e = $1.6 \times {10^{ - 19}}$ C
Kinetic energy, KE = 20 MeV = $20 \times {10^6}$ eV where e = $1.6 \times {10^{ - 19}}$ C (charge of a proton)
KE = $20 \times {10^6} \times 1.6 \times {10^{ - 19}}$ V
As we know that the kinetic energy acquired by a proton having charge q and potential difference of V after making N revolutions between the dees is given by
${\text{KE}} = 2NqV$
By substituting the values of the kinetic energy, charge and the potential difference in the above equation, we get
$
\Rightarrow 20 \times {10^6} \times 1.6 \times {10^{ - 19}} = 2N\left( {1.6 \times {{10}^{ - 19}}} \right){10^5} \\
\Rightarrow N = \dfrac{{20 \times {{10}^6} \times \left( {1.6 \times {{10}^{ - 19}}} \right)}}{{2\left( {1.6 \times {{10}^{ - 19}}} \right){{10}^5}}} \\
\Rightarrow N = 100 \\
$
Therefore, a total of 100 revolutions are required to acquire a kinetic energy of 20 MeV.
Hence, option A is correct.
Note- In this particular problem, we are given with an extra data i.e., the magnitude of magnetic field which is equal to 2 teslas. This data is not at all required to solve this problem. In these types of problems, the units should be taken care of. We converted kilovolts into volts and MeV into volts in order to ensure the transparency of the units.
Complete step-by-step solution -
Given, Magnetic field, B = 2 T
Potential difference, V = 100 KV = 100$ \times $1000 V = ${10^5}$ V
Charge of any proton is simply charge corresponding to an electron i.e., q = e = $1.6 \times {10^{ - 19}}$ C
Kinetic energy, KE = 20 MeV = $20 \times {10^6}$ eV where e = $1.6 \times {10^{ - 19}}$ C (charge of a proton)
KE = $20 \times {10^6} \times 1.6 \times {10^{ - 19}}$ V
As we know that the kinetic energy acquired by a proton having charge q and potential difference of V after making N revolutions between the dees is given by
${\text{KE}} = 2NqV$
By substituting the values of the kinetic energy, charge and the potential difference in the above equation, we get
$
\Rightarrow 20 \times {10^6} \times 1.6 \times {10^{ - 19}} = 2N\left( {1.6 \times {{10}^{ - 19}}} \right){10^5} \\
\Rightarrow N = \dfrac{{20 \times {{10}^6} \times \left( {1.6 \times {{10}^{ - 19}}} \right)}}{{2\left( {1.6 \times {{10}^{ - 19}}} \right){{10}^5}}} \\
\Rightarrow N = 100 \\
$
Therefore, a total of 100 revolutions are required to acquire a kinetic energy of 20 MeV.
Hence, option A is correct.
Note- In this particular problem, we are given with an extra data i.e., the magnitude of magnetic field which is equal to 2 teslas. This data is not at all required to solve this problem. In these types of problems, the units should be taken care of. We converted kilovolts into volts and MeV into volts in order to ensure the transparency of the units.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

