
A prism of refractive index $\sqrt 2 $has a refracting angle of 60$^\circ $. At what angle must a ray incident on it so that it suffers minimum deviation?
(A) 30$^\circ $
(B) 45$^\circ $
(C) 60$^\circ $
(D) 75$^\circ $
Answer
218.1k+ views
Hint:The angle of incidence is equal to the angle of emergence for minimum deviation. For a prism, the refractive angle is given by $\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ where A is the angle of prism and ${\delta _m}$ is the angle of minimum deviation.
Complete step-by-step solution
The refractive index of the prism is given as $\mu = \sqrt 2 $and the refracting angle of the prism is 60$^\circ $, which is also the angle of the prism which is denoted as A.
For a prism, the sum of angle of incidence and the angle of emergence is equal to the sum of angle of prism and angle of minimum deviation.
i + e = A + ${\delta _m}$
For the case of minimum deviation, the angle of incidence is the same as angle of emergence, i = e, therefore,
i = $\dfrac{{A + {\delta _m}}}{2}$ …equation (1)
Now that we have obtained the relation between angle of incidence and angle of prism and angle of minimum deviation, we can consider the relation of the refractive index to further solve the problem.
$\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ …equation (2)
We now substitute equation (1) in equation (2) and substitute the values of refractive index as well as angle of prism. We obtain,
$\sqrt 2 = \dfrac{{\sin \left( i \right)}}{{\sin \left( {\dfrac{{60^\circ }}{2}} \right)}}$
On simplifying, we get,
sin (i) = $\sqrt 2 \times \sin \left( {30^\circ } \right)$
The value of sin(30$^\circ $) is $\dfrac{1}{2}$. Therefore, the value of sin (i) becomes,
sin (i) = $\dfrac{1}{{\sqrt 2 }}$
Since sin (i) = $\dfrac{1}{{\sqrt 2 }}$, this means that i = 45$^\circ $
Hence, the angle of incidence for minimum deviation in the given prism is 45$^\circ $.
Therefore, option B is the correct answer.
Note: The equation for the refractive index of the prism and the equivalence relation between the sum of angle of incidence and the angle of emergence and the sum of angle of prism and the angle of minimum deviation are very important. In this question, if the angle of minimum deviation is given, then we do not need to use the relation for the refractive index.
Complete step-by-step solution
The refractive index of the prism is given as $\mu = \sqrt 2 $and the refracting angle of the prism is 60$^\circ $, which is also the angle of the prism which is denoted as A.
For a prism, the sum of angle of incidence and the angle of emergence is equal to the sum of angle of prism and angle of minimum deviation.
i + e = A + ${\delta _m}$
For the case of minimum deviation, the angle of incidence is the same as angle of emergence, i = e, therefore,
i = $\dfrac{{A + {\delta _m}}}{2}$ …equation (1)
Now that we have obtained the relation between angle of incidence and angle of prism and angle of minimum deviation, we can consider the relation of the refractive index to further solve the problem.
$\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ …equation (2)
We now substitute equation (1) in equation (2) and substitute the values of refractive index as well as angle of prism. We obtain,
$\sqrt 2 = \dfrac{{\sin \left( i \right)}}{{\sin \left( {\dfrac{{60^\circ }}{2}} \right)}}$
On simplifying, we get,
sin (i) = $\sqrt 2 \times \sin \left( {30^\circ } \right)$
The value of sin(30$^\circ $) is $\dfrac{1}{2}$. Therefore, the value of sin (i) becomes,
sin (i) = $\dfrac{1}{{\sqrt 2 }}$
Since sin (i) = $\dfrac{1}{{\sqrt 2 }}$, this means that i = 45$^\circ $
Hence, the angle of incidence for minimum deviation in the given prism is 45$^\circ $.
Therefore, option B is the correct answer.
Note: The equation for the refractive index of the prism and the equivalence relation between the sum of angle of incidence and the angle of emergence and the sum of angle of prism and the angle of minimum deviation are very important. In this question, if the angle of minimum deviation is given, then we do not need to use the relation for the refractive index.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

