
A potential energy of a bar magnet moment \[8A{m^2}\] placed in a uniform magnetic field of \[2T\] at an angle of \[120^\circ \] is equal to
A) \[ - 16{\text{ }}J\]
B) \[16{\text{ }}J\]
C) \[ - 8{\text{ }}J\]
D) \[8{\text{ }}J\]
Answer
216.3k+ views
Hint: The potential energy of a bar magnet is proportional to the dot product of the magnetic moment and the uniform magnetic field. It is minimum when the magnet is perpendicular to the magnetic field and maximum when it is aligned with it.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

