
A potential energy of a bar magnet moment \[8A{m^2}\] placed in a uniform magnetic field of \[2T\] at an angle of \[120^\circ \] is equal to
A) \[ - 16{\text{ }}J\]
B) \[16{\text{ }}J\]
C) \[ - 8{\text{ }}J\]
D) \[8{\text{ }}J\]
Answer
221.7k+ views
Hint: The potential energy of a bar magnet is proportional to the dot product of the magnetic moment and the uniform magnetic field. It is minimum when the magnet is perpendicular to the magnetic field and maximum when it is aligned with it.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26 Electronic Devices Mock Test: Free Practice Online

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

JEE Main 2025-26 Mock Tests: Free Practice Papers & Solutions

Two identical charged spheres suspended from a common class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

