
A potential energy of a bar magnet moment \[8A{m^2}\] placed in a uniform magnetic field of \[2T\] at an angle of \[120^\circ \] is equal to
A) \[ - 16{\text{ }}J\]
B) \[16{\text{ }}J\]
C) \[ - 8{\text{ }}J\]
D) \[8{\text{ }}J\]
Answer
225.6k+ views
Hint: The potential energy of a bar magnet is proportional to the dot product of the magnetic moment and the uniform magnetic field. It is minimum when the magnet is perpendicular to the magnetic field and maximum when it is aligned with it.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Formula used:
In this solution, we will use the following formula:
Potential energy when a magnet is placed in a magnetic field: $U = - M.B$ where $M$ is the magnetic moment and $B$ is the external magnetic field.
Complete step by step answer:
We want to calculate the potential energy of a bar magnet when it is placed in an external magnetic field. We know that the potential energy is calculated as the dot product of the magnetic moment of the magnet and the strength of the external magnetic field. So, we can write the potential energy as
$U = - M.B$
In our case, the magnetic moment of the bar magnet is \[8A{m^2}\] and the strength of the external magnetic field is \[2T\] and the angle between these two vectors is given as \[120^\circ \]. SO, the potential energy will be
$U = - MB\cos 120^\circ $
So, substituting the value of $M = 8A{m^2}$ and $B = 2T$, we can calculate the potential energy as
$U = - 8 \times 2 \times \dfrac{{ - 1}}{2}$
Which gives us
$U = 8\,J$
Note: We must be careful to not forget the minus sign in the formula for potential energy. The potential energy of the magnet will be minimum when it is aligned with the external magnetic which means the system will always try to minimize the potential energy and, in this case, also, the magnet will move such that it aligns as described above.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

